zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Nonlinear dynamics of a convection loop: A quantitative comparison of experiment with theory. (English) Zbl 0588.76094
The flow in a loop of fluid, heated at constant flux over the bottom half and cooled at constant temperature over the top half, is shown to be qualitatively and quantitatively described by the nonlinear dynamics of the Lorenz model over a wide range of parameters encompassing three different chaotic flow regimes. The boundaries of the five flow regimes are determined experimentally and compared with a scaling relationship which relates the physical parameters of the loop and working fluid to the parameters of the Lorenz model. The characteristics of the three chaotic flow regimes are also discussed.

76E30Nonlinear effects (fluid mechanics)
76R99Diffusion and convection (fluid mechanics)
82D15Liquids (statistical mechanics)
70-08Computational methods (mechanics of particles and systems)
80A20Heat and mass transfer, heat flow
Full Text: DOI
[1] Ruelle, D.; Takens, F.: Comm. math. Phys.. 20, 167 (1971) · Zbl 0227.76084
[2] Abraham, N. B.; Gollub, J. P.; Swinney, H. L.: Physica. 11D, 252 (1984)
[3] Feigenbaum, M. J.: J. stat. Phys.. 19, 25 (1978)
[4] Libchaber, A.; Maurer, J.: J. phys. (Paris) colloq.. 41, C3-51 (1980)
[5] Brandstater, A.; Swift, J.; Swinney, H. L.; Wolf, A.; Farmer, J. D.; Jen, E.; Crutchfield, J. P.: Phys. rev. Lett.. 51, 1442 (1984)
[6] Guckenheimer, J.; Buzyna, G.: Phys. rev. Lett.. 51, 1438 (1983)
[7] Lorenz, E. N.: J. atmos. Sci.. 20, 130 (1963)
[8] Gorman, M.; Widmann, P. J.; Robbins, K. A.: Phys. rev. Lett.. 52, 2241 (1984)
[9] Yorke, J. A.; Yorke, E. D.: Hydrodynamic stability and the transition to turbulence. Topics in applied physics 45, 78 (1982) · Zbl 0524.28021
[10] Malkus, W. V. R.: Mem. soc. Royale de sci. De liege. 4, 125 (1972)
[11] Hart, J. E.: Int. J. Heat mass transfer. 27, 125 (1984)
[12] Japikse, D.: Advances in thermosyphon technology. Advances in heat transfer, 1 (1973)
[13] Mertol, A.; Grief, R.: To be published in w.aungs.kakacr.viskanta natural convection: fundamentals and applications. Natural convection: fundamentals and applications (1975)
[14] Creveling, H. F.; Depaz, J. F.; Baladi, J. Y.; Schoenals, R. J.: J. fluid mech.. 67, 65 (1975)
[15] Damerell, P. S.; Schoenhals, R. J.: J. heat trans.. 101, 672 (1979)
[16] Welander, P.: J. fluid mech.. 29, 17 (1967) · Zbl 0163.20702
[17] Grief, R.; Zvirin, Y.; Mertol, A.: Jour. heat trans.. 101, 684 (1979)
[18] Robbins, K. A.: Ph.d. thesis. (1975)
[19] Lienhard, J. H.: A heat transfer textbook. (1981)
[20] Sparrow, Colin: The Lorenz equations: bifurcations, chaos, and strange attractors. (1982) · Zbl 0504.58001
[21] Franchescini, V.: J. stat. Phys.. 22, 397 (1980)
[22] J.A. Yorke and E.D. Yorke, J. Stat. Phys. 21 (197) 263.
[23] Robbins, K. A.: Math. proc. Cambridge phil. Soc.. 82, 309 (1977)
[24] J.A. Yorke and E.D. Yorke, to be published.
[25] Shaw, R.: Z. naturforsch.. 36A, 80 (1981)
[26] Grebogi, C.; Ott, E.; Yorke, J. A.: Phys. rev. Lett.. 48, 1507 (1982)