×

An alternative alpha finite element method with discrete shear gap technique for analysis of laminated composite plates. (English) Zbl 1415.74048

Summary: This paper presents an alternative alpha finite element method using triangular meshes (\(A\alpha \)FEM) for static, free vibration and buckling analyses of laminated composite plates. In the \(A\alpha \)FEM, an assumed strain field is carefully constructed by combining compatible strains and additional strains with an adjustable parameter \(\alpha \) which can produce an effectively softer stiffness formulation compared to the linear triangular element. The stiffness matrices are obtained based on the strain smoothing technique over the smoothing domains and the constant strains on triangular sub-domains associated with the nodes of the elements. The discrete shear gap (DSG) method is incorporated into the \(A\alpha \)FEM to eliminate transverse shear locking, and an improved triangular element termed as \(A\alpha \)DSG3 is proposed. Several numerical examples are then given to demonstrate the effectiveness of the \(A\alpha \)DSG3.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74K20 Plates
74E30 Composite and mixture properties

Software:

XFEM
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Reissner, E.; Stavsky, Y., Bending and stretching of certain types of aelotropic elastic plates, Journal of Applied Mechanics, 28, 402-408 (1961) · Zbl 0100.20904
[2] Stavsky, Y., Bending and stretching of laminated aelotropic plates, Journal of Engineering Mechanics Division, 87, 31-56 (1961) · Zbl 0100.20904
[3] Dong, S. B.; Pister, K. S.; Taylor, R. L., On the theory of laminated anisotrophic plates and shells, Journal of Aeronautical Science, 29, 29, 969-975 (1962) · Zbl 0109.17504
[4] Yang, P. C.; Norris, C. H.; Stavsky, Y., Elastic wave propagation in heterogeneous plates, International Journal of Solids and Structures, 2, 665-684 (1966)
[5] Ambartsumyan, S. A., Theory of Anisotropic Plates (1969), Technomic: Technomic CT · Zbl 0184.50701
[6] Whitney, J. M.; Leissa, A. W., Analysis of heterogeneous anisotropic plates, Journal of Applied Mechanics, 36, 2, 261-266 (1969) · Zbl 0181.52603
[7] Whitney, J. M., The effect of transverse shear deformation in the bending of laminated plates, Journal of Composite Materials, 3, 534-547 (1969)
[8] Whitney, J. M.; Pagano, N. J., Shear deformation in heterogeneous anisotropic plates, Journal of Applied Mechanics, 37, 4, 1031-1036 (1970) · Zbl 0218.73078
[9] Reissner, E., A consistent treatment of transverse shear deformations in laminated anisotropic plates, AIAA Journal, 10, 5, 716-718 (1972)
[10] Reissner, E., The effect of transverse shear deformations on the bending of elastic plates, Journal of Applied Mechanics, 12, A69-A77 (1945) · Zbl 0063.06470
[11] Reddy, J. N., Energy and Variational Methods in Applied Mechanics (1984), Wiley: Wiley New York · Zbl 0635.73017
[12] Reddy, J. N., Mechanics of Laminated Composite Plates (1997), CRC Press: CRC Press New York · Zbl 0899.73002
[13] Nosier, A.; Kapania, R. K.; Reddy, J. N., Free vibration analysis of laminated plates using a layerwise theory, AIAA Journal, 31, 12, 2335-2346 (1993) · Zbl 0793.73052
[14] Pagano, N. J.; Soni, R. S., Globallocal laminate variational model, International Journal of Solids and Structures, 19, 207-228 (1983) · Zbl 0507.73061
[15] Reddy, J. N., A refined nonlinear theory of plates with transverse shear deformation, International Journal of Solids and Structures, 20, 9-10, 881-906 (1984) · Zbl 0556.73064
[16] Shimpi, R. P., Refined plate theory and its variants, AIAA Journal, 40, 1, 137-146 (2002)
[17] Shimpi, R. P.; Patel, H. G., A two variable refined plate theory for orthotropic plate analysis, International Journal of Solids and Structures, 43, 22, 6783-6799 (2006) · Zbl 1120.74605
[18] Zienkiewicz, O. C.; Lefebvre, D., A robust triangular plate bending element of the Reissner Mindlin type, International Journal for Numerical Methods in Engineering, 26, 1169-1184 (1988) · Zbl 0634.73064
[19] Ayad; Dhatt, G.; L Batoz, J., A new hybrid-mixed variational approach for Reissner Mindlin plate, International Journal for Numerical Methods in Engineering, 42, 1149-1179 (1998) · Zbl 0912.73051
[20] Lovadina, C., Analysis of a mixed finite element method for the Reissner Mindlin plate problems, Computer Methods in Applied Mechanics and Engineering, 163, 71-85 (1998) · Zbl 0962.74065
[21] Taylor, R. L.; Auricchio, F., Linked interpolation for Reissner-Mindlin plate element: Part II-A simple triangle, International Journal for Numerical Methods in Engineering, 36, 3043-3056 (1993) · Zbl 0780.73090
[22] Lovadina, C.; Mora, D.; Rodrfguez, R., Approximation of the buckling problem for Reissner-Mindlin plates, SIAM Numerical Analysis, 48, 603-632 (2010) · Zbl 1410.74071
[23] Durn, R.; Hervella-Nieto, L.; Liberman, E.; Rodrfguez, R.; Solomin, J., Approximation of the vibration modes of a plate by Reissner-Mindlin equations, Mathematics of Computation, 68, 1447-1463 (1999) · Zbl 0945.74030
[25] Simo, J. C.; Rifai, M. S., A class of mixed assumed strain methods and the method of incompatible modes, International Journal for Numerical Methods in Engineering, 29, 1595-1638 (1990) · Zbl 0724.73222
[26] Csar de S, J. M.A.; Natal Jorge, R. M., New enhanced strain elements for incompatible problems, International Journal for Numerical Methods in Engineering, 44, 229-248 (1999) · Zbl 0937.74062
[27] Csar de S, J. M.A.; Natal Jorge, R. M.; Fontes Valente, R. A.; Areias, P. M.A., Development of shear locking-free shell elements using an enhanced assumed strain formulation, International Journal for Numerical Methods in Engineering, 53, 1721-1750 (2002) · Zbl 1114.74484
[28] Cardoso, R. P.R.; Yoon, J. W.; Mahardika, M.; Choudhry, S.; Alves de Sousa, R. J.; Fontes Valente, R. A., Enhanced assumed strain (EAS) and assumed natural strain (ANS) methods for one-point quadrature solid-shell elements, International Journal for Numerical Methods in Engineering, 75, 156-187 (2008) · Zbl 1195.74165
[29] Bletzinger, K. U.; Bischoff, M.; Ramm, E., A unified approach for shear-locking free triangular and rectangular shell finite elements, International Journal for Numerical Methods in Engineering, 75, 321-334 (2000)
[30] Liu, G. R.; Dai, K. Y.; Nguyen, T. T., A smoothed finite element method for mechanics problems, Computational Mechanics, 39, 859-877 (2007) · Zbl 1169.74047
[31] Dai, K. Y.; Liu, G. R.; Nguyen, T. T., An \(n\)-sided polygonal smoothed finite element method (nSFEM) for solid mechanics, Finite Elements in Analysis and Design, 43, 847-860 (2007)
[32] Dai, K. Y.; Liu, G. R., Free and forced vibration analysis using the smoothed finite element method (SFEM), Journal Sound and Vibration, 301, 803-820 (2007)
[34] Rabczuk, T.; Bordas, S.; Zi, G., A three dimensional meshfree method for static and dynamic multiple crack nucleation/propagation with crack path continuity, Computational Mechanics, 40, 3, 473-495 (2007) · Zbl 1161.74054
[35] Nguyen-Xuan, H.; Rabczuk, T.; Bordas, S.; Debongnie, J. F., A smoothed finite element method for plate analysis, Computer Methods in Applied Mechanics and Engineering, 197, 1184-1203 (2008) · Zbl 1159.74434
[36] Nguyen-Thanh, N.; Rabczuk, T.; Nguyen-Xuan, H.; Bordas, S., A smoothed finite element method for shell analysis, Computer Methods in Applied Mechanics and Engineering, 198, 165-177 (2008) · Zbl 1194.74453
[37] Nguyen-Thanh, N.; Thai-Hoang, C.; Nguyen-Xuan, H.; Rabczuk, Timon, A smoothed finite element method for the static and free vibration analysis of shells, Journal of Civil Engineering and Architecture, 4, 33, 164-178 (2011)
[38] Rabczuk, T.; Areias, P. M.A.; Belytschko, T., A meshfree thin shell method for non-linear dynamic fracture, International Journal for Numerical Methods in Engineering, 72, 5, 524-548 (2007) · Zbl 1194.74537
[39] Rabczuk, T.; Areias, P., A meshfree thin shell for arbitrary evolving cracks based on an external enrichment, Computer Modeling in Engineering and Sciences, 16, 2, 115-130 (2006)
[40] Bordas, S.; Rabczuk, T.; Zi, G., Three-dimensional crack initiation, propagation, branching and junction in non-linear materials by an extended meshfree method without asymptotic enrichment, Engineering Fracture Mechanics, 75, 5, 943-960 (2008)
[41] Thai-Hoang, C.; Nguyen-Thanh, N.; Nguyen-Xuan, H.; Rabczuk, Timon; Bordas, Stephane, A smoothed finite element method for free vibration and buckling analysis of shells, KSCE Journal of Civil Engineering, 15, 2, 347-361 (2011)
[42] Bordas, S.; Rabczuk, T.; Nguyen-Xuan, H.; Nguyen Vinh, P.; Natarajan, S.; Bog, T.; Do Minh, Q.; Nguyen Vinh, H., Strain smoothing in FEM and XFEM, Computers and Structures, 88, 23-24, 1419-1443 (2010)
[43] Rabczuk, T.; Belytschko, T., Cracking particles: a simplified meshfree methods for arbitrary evovling cracks, International Journal for Numerical Methods in Engineering, 61, 2316-2343 (2004) · Zbl 1075.74703
[44] Rabczuk, T.; Belytschko, T., Application of particle methods to static fracture of reinforced concrete structures, International Journal of Fracture, 137, 19-49 (2006) · Zbl 1197.74175
[45] Rabczuk, T.; Belytschko, T., Adaptivity for structured meshfree particle methods in 2D and 3D, International Journal for Numerical Methods in Engineering, 63, 11, 1559-1582 (2005) · Zbl 1145.74041
[46] Rabczuk, T.; Belytschko, T., Application of meshfree particle methods to static fracture of reinforced concrete structures, International Journal of Fracture, 137, 1-4, 19-49 (2006) · Zbl 1197.74175
[47] Rabczuk, T.; Areias, P. M.A.; Belytschko, T., A simplified meshfree method for shear bands with cohesive surfaces, International Journal for Numerical Methods in Engineering, 69, 5, 993-1021 (2007) · Zbl 1194.74536
[48] Rabczuk, T.; Zi, G.; Bordas, S.; Nguyen-Xuan, H., A geometrically nonlinear three-dimensional cohesive crack method for reinforced concrete structures, Engineering Fracture Mechanics, 75, 4740-4758 (2008)
[49] Rabczuk, T.; Samaniego, E., Discontinuous modelling of shear bands with adaptive meshfree methods, Computer Methods in Applied Mechanics and Engineering, 197, 641-658 (2008) · Zbl 1169.74655
[50] Rabczuk, T.; Gracie, R.; Song, J. H.; Belytschko, T., Immersed particle method for fluid-structure interaction, International Journal for Numerical Methods in Engineering, 81, 1, 48-71 (2010) · Zbl 1183.74367
[51] Liu, G. R., A generalized gradient smoothing technique and the smoothed bilinear form for Galerkin formulation of a wide class of computational methods, International Journal Computation Methods, 2, 199-236 (2008) · Zbl 1222.74044
[52] Liu, G. R.; Nguyen-Thoi, T.; Nguyen-Xuan, H.; Lam, K. Y., A node-based smoothed finite element method (NS-FEM) for upper bound solutions to solid mechanics problems, Computational Structural, 87, 14-26 (2009)
[53] Liu, G. R.; Nguyen-Xuan, H.; Nguyen-Thoi, T.; Xu, X., A novel Galerkin-like weak form and a superconvergent alpha finite element method \((Sα\) FEM) for mechanics problems using triangular meshes, Journal of Computational Physics, 228, 4055-4087 (2009) · Zbl 1273.74542
[54] Nguyen-Thanh, N.; Rabczuk, T.; Nguyen-Xuan, H.; Bordas, S., An alternative alpha finite element method (A \(\alpha\) FEM) free and forced vibration analysis of solids using triangular meshes, Journal of Computational and Applied Mathematics, 223, 9, 2112-2135 (2010) · Zbl 1423.74910
[55] Nguyen-Thanh, N.; Rabczuk, T.; Nguyen-Xuan, H.; Bordas, S., An alternative alpha finite element method with discrete shear gap technique for analysis of isotropic Mindlin-Reissner plates, Finite Elements in Analysis and Design, 47, 5, 519-535 (2011)
[56] Reddy, J. N., Mechanics of Laminated Composite Plates and Shells Theory and Analysis (2004), CRC Press: CRC Press New York · Zbl 0899.73002
[57] Liu, G. R.; Xu, X.; Zhang, G. Y.; Nguyen-Thoi, T., A superconvergent point interpolation method (SC-PIM) with piecewise linear strain field using triangular mesh, International Journal for Numerical Methods in Engineering, 77, 1439-1467 (2008) · Zbl 1156.74394
[58] Zienkiewicz, O. C.; Taylor, R. L., The Finite Element Method (2000), Butterworth Heinemann: Butterworth Heinemann Oxford · Zbl 0991.74002
[59] Belytschko, T.; Bachrach, W. E., Efficient implementation of quadrilaterals with high coarse-mesh accuracy, Computer Methods in Applied Mechanics and Engineering, 54, 279-301 (1986) · Zbl 0579.73075
[60] Belytschko, T.; Bindeman, L. P., Assumed strain stabilization of the 4-node quadrilateral with 1-point quadrature for nonlinear problems, Computer Methods in Applied Mechanics and Engineering, 88, 311-340 (1983) · Zbl 0742.73019
[61] Fredriksson, M.; Ottosen, N. S., Fast and accurate 4-node quadrilateral, International Journal for Numerical Methods in Engineering, 61, 1809-1834 (2004) · Zbl 1075.74644
[62] Piltner, R.; Taylor, R. L., Triangular finite elements with rotational degrees of freedom and enhanced strain modes, Computers and Structures, 75, 361-368 (2000)
[63] Pian, T. H.H.; Wu, C. C., Hybrid and Incompatible Finite Element Methods (2006), CRC Press: CRC Press Boca Raton · Zbl 1110.65003
[64] Nguyen-Xuan, H.; Rabczuk, T.; Nguyen-Thanh, N.; Nguyen-Thoi, T.; Bordas, S., A node-based smoothed finite element method with stabilized discrete shear gap technique for analysis of RM plates, Computational Mechanics, 46, 5, 679-701 (2010) · Zbl 1260.74029
[65] Bathe, K. J.; Dvorkin, E. N., A four-node plate bending element based on Mindlin-Reissener plate theory and a mixed interpolation, International Journal for Numerical Methods in Engineering, 21, 367-383 (1985) · Zbl 0551.73072
[66] Tessler, A.; Hughes, T. J.R., A three-node Mindlin plate element with improved transverse shear, Computer Methods in Applied Mechanics and Engineering, 50, 71-101 (1985) · Zbl 0562.73069
[67] Nguyen-Xuan, H.; Liu, G. R.; Thai-Hoang, C.; Nguyen-Thoi, T., An edge-based smoothed finite element method with stabilized discrete shear gap technique for analysis of Reissner-Mindlin plates, Computer Methods in Applied Mechanics and Engineering, 199, 9-12, 471-489 (2010) · Zbl 1227.74083
[68] Srinivas, S., A refined analysis of composite laminates, Journal of Sound and Vibration, 30, 495-507 (1973) · Zbl 0267.73050
[69] Pandya, B. N.; Kant, T., Higher-order shear deformable theories for flexure of sandwich plates-finite element evaluations, International Journal of Solids and Structures, 24, 419-451 (1988) · Zbl 0676.73044
[70] Ferreira, A. J.M.; Fasshauer, G. E., Natural frequencies of shear deformable beams and plates by a rbf-pseudospectral method, Computer Methods in Applied Mechanics and Engineering, 196, 134-146 (2006) · Zbl 1120.74528
[71] Ferreira, A. J.M.; Castro, L. M.S.; Bertoluzza, S., A high order collocation method for the static and vibration analysis of composite plates using a first-order theory, Composite Structures, 89, 3, 424-432 (2009)
[72] Reddy, J. N., A simple higher-order theory for laminated composite plates, Journal of Applied Mechanics, 51, 745-752 (1984) · Zbl 0549.73062
[73] Akhras, G.; Cheung, M. S.; Li, W., Static and vibrations analysis of anisotropic laminated plates by finite strip method, International Journal of Solids and Structures, 30, 22, 3129-3137 (1993) · Zbl 0790.73078
[74] Pagano, N. J., Exact solutions for rectangular bidirectional composites and sandwich plates, Journal of Composite Materials, 4, 20-34 (1970)
[75] Akhras, G.; Cheung, M. S.; Li, W., Finite strip analysis for anisotropic laminated composite plates using higher-order deformation theory, Computers and Structures, 52, 3, 471-477 (1994) · Zbl 0872.73074
[76] Ferreira, A. J.M.; Roque, C. M.C.; Martins, P. A.L. S., Analysis of composite plates using higher-order shear deformation theory and a finite point formulation based on the multiquadric radial basis function method, Composite Structures, 34, 627-636 (2003)
[77] Ferreira, A. J.M., Analysis of composite plates using a layerwise deformation theory and multiquadrics discretization, Mechanics of Advanced Materials and Structures, 12, 2, 99-112 (2005)
[78] Kdheir, A., Analysis of symmetric cross-ply elastic plates using a higher-order theory, part ii: buckling and free vibration, Composite Structures, 9, 259-277 (1988)
[79] Liew, K. M.; Huang, Y. Q.; Reddy, J. N., Vibration analysis of symmetrically laminated plates based on fsdt using the moving least squares differential quadrature method, Journal of Composite Materials, 192, 2203-2222 (2003) · Zbl 1119.74628
[80] Ferreira, A. J.M., A formulation of the multiquadric radial basis function method for the analysis of laminated composite plates, Composite Structures, 59, 3, 385-392 (2003)
[81] Liew, K. M., Solving the vibration of thick symmetric laminates by reissner/mindlin plate theory and the p-ritz method, Journal of Sound and Vibration, 198, 343-360 (1996)
[82] Zhen, W.; Wanji, C., Free vibration of laminated composite and sandwich plates using global-local higher-order theory, Journal of Sound and Vibration, 298, 333-349 (2006)
[83] Nguyen-Van, H.; Mai-Duy, N.; Tran Cong, T., Free vibration analysis of laminated plate/shell structures based on fsdt with a stabilized nodal-integrated quadrilateral element, Journal of Sound and Vibration, 313, 1-2, 205-223 (2008)
[84] Ferreira, A. J.M.; Jorge, R. M.N.; Roque, C. M.C., Free vibration analysis of symmetric laminated composite plates by fsdt and radial basis functions, Computer Methods in Applied Mechanics and Engineering, 194, 4265-4278 (2005) · Zbl 1151.74431
[85] Wang, S., Free vibration analysis of skew fiber-reinforced composite laminates based on first-order shear deformation plate theory, Journal of Sound and Vibration, 63, 525-538 (1997) · Zbl 0899.73257
[87] Liu, L.; Chua, L. P.; Ghista, D. N., Mesh-free radial basis function method for static, free vibration and buckling analysis of shear deformable composite laminates, Composite Structures, 78, 58-69 (2007)
[88] Phan, N. D.; Reddy, J. N., Analysis of laminated composite plates using a higher-order shear deformation theory, International Journal for Numerical Methods in Engineering, 21, 2201-2219 (1985) · Zbl 0577.73063
[89] Khdeir, A. A.; Librescu, L., Analysis of symmetric cross-ply elastic plates using a higher-order theory. Part ii: buckling and free vibration, Composite Structures, 9, 259-277 (1988)
[91] Chakrabarti, A.; Sheikh, A. H., Buckling of laminated composite plates by a new element based on higher order shear deformation theory, Mechanics of Composite Materials and Structures, 10, 4, 303-317 (2003)
[92] Reddy, J. N.; Phan, P. H., Stability and vibration of isotropic, orthotropic and laminated plates according to a higher order shear deformation theory, Journal of Sound and Vibration, 89, 157-170 (1985) · Zbl 0558.73031
[93] Huang, Y. Q.; Li, Q. S., Bending and buckling analysis of antisymmetric laminates using the moving least square differential quadrature method, Computer Methods in Applied Mechanics and Engineering, 193, 33-35, 3471-3492 (2004) · Zbl 1068.74090
[94] Wang, J.; Liew, K. M.; Tan, M. J.; Rajendran, S., Analysis of rectangular laminated composite plates via fsdt meshless method, International Journal of Mechanical Sciences, 44, 7, 1275-1293 (2002) · Zbl 1026.74082
[95] Reddy, J. N.; Khdeir, A. A., Buckling and vibration of laminated composite plates using various plate theories, AIAA Journal, 27, 12, 1808-1817 (1989) · Zbl 0697.73039
[96] Fares, M. E.; Zenkour, A. M., Buckling and free vibration of non-homogeneous composite cross-ply laminated plates with various plate theories, Composite Structures, 44, 279-287 (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.