Nilsson, Nils J. Probabilistic logic. (English) Zbl 0589.03007 Artif. Intell. 28, 71-87 (1986). Als Verallgemeinerung der klassischen Logik wird eine Logik mit Wahrheitswerten zwischen 0 und 1 vorgestellt. Techniken zur Berechnung der Wahrscheinlichkeit von Folgerungen und bedingten Wahrscheinlichkeiten, u.a. eine approximative Methode, werden angegeben. Reviewer: E.Melis Cited in 5 ReviewsCited in 259 Documents MSC: 03B48 Probability and inductive logic × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Lukasiewicz, J., Logical foundations of probability theory, (Berkowski, L., Jan Lukasiewicz Selected Works (1970), North-Holland: North-Holland Amsterdam), 16-43 [2] Carnap, R., The two concepts of probability, (Logical Foundations of Probability (1950), University of Chicago Press: University of Chicago Press Chicago, IL), 19-51 · Zbl 0040.07001 [3] Hempel, C. G., Studies in the logic of confirmation, (Aspects of Scientific Explanation and other Essays in the Philosophy of Science (1965), The Free Press: The Free Press New York), 3-51 [4] Suppes, P., Probabilistic inference and the concept of total evidence, (Hintikka; Suppes, P., Aspects of Inductive Logic (1966), North-Holland: North-Holland Amsterdam), 49-65 · Zbl 0202.29603 [5] Dempster, A. P., A generalization of Bayesian inference, J. Roy. Statist. Soc. B, 30, 205-247 (1968) · Zbl 0169.21301 [6] Shafer, G. A., (Mathematical Theory of Evidence (1979), Princeton University Press: Princeton University Press Princeton, NJ) [7] Adams, E. W.; Levine, H. F., On the uncertainties transmitted from premises to conclusions in deductive inferences, Synthese, 30, 429-460 (1975) · Zbl 0307.02031 [8] Zadeh, L. A., Fuzzy logic and approximate reasoning, Synthese, 30, 407-428 (1975) · Zbl 0319.02016 [9] Shortliffe, E. H., Computer-based medical consultations: MYCIN (1976), Elsevier: Elsevier New York [10] (Webber, B. W.; Nilsson, N. J., Readings in Artificial Intelligence (1981), Tioga: Tioga Palo Alto, CA) · Zbl 0498.68054 [11] Lowrance, J. D.; Garvey, T. D., Evidential reasoning: a developing concept, (IEEE 1982 Proceedings International Conference on Cybernetics and Society (October 1982)), 6-9 [12] Lowrance, J. D.; Garvey, T. D., Evidential reasoning: an implementation for multisensor integration, (SRI AI Center Technical Note 307 (1983), SRI International: SRI International Menlo Park, CA) [13] Lemmer, J. F.; Barth, S. W., Efficient minimum information updating for Bayesian inferencing in expert systems, (Proceedings Second National Conference on Artificial Intelligence. Proceedings Second National Conference on Artificial Intelligence, Pittsburgh, PA (1982)), 424-427 [14] Lemmer, J. F., Generalized Bayesian updating of incompletely specified distributions, (Working Paper (November 30, 1982), Par Technology Corporation: Par Technology Corporation New Hartford, NY) · Zbl 0545.62026 [15] Duda, R. O., A computer-based consultant for mineral exploration, (Technical Rept. (1978), SRI International: SRI International Menlo Park, CA) [16] Cheeseman, P., A method of computing generalized Bayesian probability values for expert systems, (Proceedings Eighth International Joint Conference on Artificial Intelligence. Proceedings Eighth International Joint Conference on Artificial Intelligence, Karlsruhe, Fed. Rep. Germany (1983), William Kaufmann: William Kaufmann Los Altos, CA) [17] (ACM Proceedings Fifteenth Annual ACM Symposium on Theory of Computing. ACM Proceedings Fifteenth Annual ACM Symposium on Theory of Computing, Boston, MA. ACM Proceedings Fifteenth Annual ACM Symposium on Theory of Computing. ACM Proceedings Fifteenth Annual ACM Symposium on Theory of Computing, Boston, MA, ACM Order No. 508830 (1983)), 310-319 [18] Grosof, B. N., An inequality paradigm for probabilistic knowledge, (Proceedings AAAI/IEEE Workshop on Uncertainty and Probability in Artificial Intelligence. Proceedings AAAI/IEEE Workshop on Uncertainty and Probability in Artificial Intelligence, Los Angeles, CA (1985)) · Zbl 0608.68076 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.