zbMATH — the first resource for mathematics

Layer potentials and regularity for the Dirichlet problem for Laplace’s equation in Lipschitz domains. (English) Zbl 0589.31005
The author considers the classical layer potentials for harmonic functions on the boundary \(\partial G\) of a bounded Lipschitz domain G in \({\mathbb{R}}^ n\) for use in Dirichlet and Neumann problems. It is shown that these potentials are invertible operators on \(L^ 2(\partial G)\) and some subspaces. In the case \(n=2\) the layer potentials are shown to be invertible on every \(L^ p(\partial G)\), \(1<p<\infty\).
Reviewer: G.Dziuk

31B25 Boundary behavior of harmonic functions in higher dimensions
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
47B10 Linear operators belonging to operator ideals (nuclear, \(p\)-summing, in the Schatten-von Neumann classes, etc.)
Full Text: DOI
[1] Calderón, A.P, Algebra of singular integral operators, () · Zbl 0222.44007
[2] Calderón, A.P, Cauchy integrals on Lipschitz curves and related operators, (), 1324-1327 · Zbl 0373.44003
[3] Courant, R; Hilbert, D, (), 258-261
[4] Coifman, R.R; Meyer, Y, Au delà des opérateurs pseudo-différentiels, () · Zbl 0483.35082
[5] Coifman, R.R; McIntosh, A; Meyer, Y, L’intégrale de Cauchy définit un opérateur borné sur L2 pour LES courbes lipschitiennes, Ann. of math., 116, 361-388, (1982) · Zbl 0497.42012
[6] Dahlberg, B.E.J, Estimates of harmonic measure, Arch. rational mech. anal., 65, 275-288, (1977) · Zbl 0406.28009
[7] Dahlberg, B.E.J, On the Poisson integral for Lipschitz and C1 domains, Studia math., 66, 7-24, (1979)
[8] Dahlberg, B.E.J, Weighted norm inequalities for the Lusin area integral and the nontangential maximal functions for functions harmonic in a Lipschitz domain, Studia math., 67, 279-314, (1980) · Zbl 0449.31002
[9] Fabes, E.B; Jodeit, M; Riviére, N.M, Potential techniques for boundary value problems on C1 domains, Acta math., 141, 165-186, (1978) · Zbl 0402.31009
[10] Fabes, E.B; Jodeit, M; Lewis, J.E, Double layer potentials for domains with corners and edges, Indiana univ. math. J., 26, 95-114, (1977) · Zbl 0363.35010
[11] Hunt, R; Wheeden, R.L, On the boundary values of harmonic functions, Trans. amer. math. soc., 132, 307-322, (1968) · Zbl 0159.40501
[12] Hunt, R; Wheeden, R.L, Positive harmonic functions on Lipschitz domains, Trans. amer. math. soc., 147, 507-527, (1970) · Zbl 0193.39601
[13] Jerison, D.S; Kenig, C.E, The Neumann problem on Lipschitz domains, Bull. amer. math. soc., 4, 203-207, (1981) · Zbl 0471.35026
[14] {\scD. S. Jerison and C. E. Kenig}, Boundary value problems on Lipschitz domains, in “Studies in Partial Differential Equations,” Studies in Mathematics, Math. Assoc. Amer., Washington, D.C., in press. · Zbl 0529.31007
[15] Jerison, D.S; Kenig, C.E, Boundary behavior of harmonic functions in non-tangentially accessible domains, Adv. in math., 46, 80-147, (1982) · Zbl 0514.31003
[16] Kenig, C.E, Weighted Hp spaces on Lipschitz domains, Amer. J. math., 102, 129-163, (1980) · Zbl 0434.42024
[17] Morrey, C.B, Multiple integrals in the calculus of variations, (1966), Springer-Verlag Berlin/Heidelberg/New York · Zbl 0142.38701
[18] Necas, J, Sur LES domaines du type \(N\), Czechoslovak. math. J., 12, 274-287, (1962) · Zbl 0106.27001
[19] Necas, J, LES méthodes directes en théorie des équations élliptiques, (1967), Academia Prague · Zbl 1225.35003
[20] Stein, E.M, Singular integrals and differentiability properties of functions, (1970), Princeton Univ. Press Princeton, N.J · Zbl 0207.13501
[21] Verchota, G, Layer potentials and boundary value problems for Laplace’s equation on Lipschitz domains, ()
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.