×

zbMATH — the first resource for mathematics

Applications of the Dirichlet principle to finite reversible nearest particle systems. (English) Zbl 0589.60081
The Dirichlet principle provides a variational expression for the survival probability of a supercritical finite reversible nearest particle system. We use this expression to derive improved bounds on this survival probability, and to develop techniques for comparing different systems with the same critical value.

MSC:
60K35 Interacting random processes; statistical mechanics type models; percolation theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aizenman, M., Newman, C.M.: Discontinuity of the percolation density in one dimensional 1/?x?y?2 percolation models. Preprint · Zbl 0613.60097
[2] Aizenman, M., Chayes, J.T., Chayes, L., Newman, C.M.: Discontinuity of the order parameter in one dimensional 1/?x?y?2 Ising and Potts models. In preparation · Zbl 1084.82514
[3] Fröhlich, J., Spencer, T.: The phase transition in the one dimensional Ising model with 1/r 2 interaction energy. Comm. Math. Phys. 84, 87-101 (1982) · Zbl 1110.82302 · doi:10.1007/BF01208373
[4] Griffeath, D., Liggett, T.M.: Critical phenomena for Spitzer’s reversible nearest particle systems. Ann. Probab. 10, 881-895 (1982) · Zbl 0498.60090 · doi:10.1214/aop/1176993711
[5] Harris, T.E.: The Theory of Branching Processes. Berlin Heidelberg New York: Springer 1963 · Zbl 0117.13002
[6] Liggett, T.M.: Two critical exponents for finite reversible nearest particle systems. Ann. Probab. 11, 714-725 (1983) · Zbl 0527.60093 · doi:10.1214/aop/1176993516
[7] Liggett, T.M.: Interacting Particle Systems. New York Heidelberg Berlin: Springer 1985 · Zbl 0559.60078
[8] Liggett, T.M.: Reversible growth models on symmetric sets. Proceedings of the 1985 Taniguchi Symposium on Probabilistic Methods in Mathematical Physics (1987) · Zbl 0653.60094
[9] Liggett, T.M.: Reversible growth models on Z d : some examples. Proceedings of the 1986 IMA Workshop on Infinite Particle Systems and Percolation · Zbl 0636.60104
[10] Liggett, T.M.: Spatial stochastic growth models. Survival and critical behavior. Proceedings of the 1986 International Congress of Mathematicians · Zbl 0667.92012
[11] Lindvall, T.: On coupling of renewal processes with use of failure rates. Stochastic Processes Appl. 22, 1-15 (1986) · Zbl 0611.60086 · doi:10.1016/0304-4149(86)90109-2
[12] Newman, C.M., Schulman, L.S.: One-dimensional 528-3 percolation models: the existence of a transition for s?2. Comm. Math. Phys. 104, 547-571 (1986) · Zbl 0604.60097 · doi:10.1007/BF01211064
[13] Spitzer, F.: Stochastic time evolution of one dimensional infinite particle systems. Bull. Am. Math. Soc. 83, 880-890 (1977) · Zbl 0372.60149 · doi:10.1090/S0002-9904-1977-14322-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.