zbMATH — the first resource for mathematics

Input optimization. I: Optimal realizations of mathematical models. (English) Zbl 0589.90068
Input optimization is a conceptually new level of optimization, at which the mathematical programming model, rather than a usual program, is optimized. This is achieved by optimizing the optimal value function by stable perturbations of the parameters considered as ”input”.
Every mathematical program, with additional information on parameters (such as the cost of purchasing an extra unit of energy or improving efficiency of the machine) can be considered as an input optimization problem. This paper is the first of several in which theory, numerical methods, and applications of input optimization are presented. It deals with optimality conditions for identifying an optimal choice of parameters over regions of stability for linear and bi-convex models.

90C30 Nonlinear programming
49M37 Numerical methods based on nonlinear programming
90C31 Sensitivity, stability, parametric optimization
Full Text: DOI
[1] R. Abrams and L. Kerzner, ”A simplified test for optimality”,Journal of Optimization Theory and Applications 25 (1978) 161–179. · Zbl 0352.90047 · doi:10.1007/BF00933262
[2] J.H. Avila, Jr., ”Continuation methods for nonlinear equations”, Ph.D. thesis, University of Maryland (College Park, MD, 1971).
[3] B. Bank, J. Guddat, D. Klatte, B. Kummer and K. Tammer,Non-linear parametric optimization (Akademie-Verlag, Berlin, 1982). · Zbl 0502.49002
[4] A. Ben-Israel and A. Charnes, ”An explicit solution of a special class of linear programming problems”,Operations Research 16 (1968) 1167–1175. · Zbl 0165.53901 · doi:10.1287/opre.16.6.1166
[5] A. Ben-Israel and T.N.E. Greville,Generalized inverses Theory and Applications (Wiley Interscience, New York, 1974). · Zbl 0305.15001
[6] A. Ben-Israel, A. Ben-Tal and S. Zlobec,Optimality in nonlinear programming: A feasible directions approach (Wiley-Interscience, New York, 1981). · Zbl 0454.90043
[7] B. Brosowski, ”On parametric linear optimization”, in: R. Henn, B. Korte and W. Oettli, eds.,Optimization and operations research Springer-Verlag Lecture Notes in Economics and Mathematical Systems No. 157 (Berlin, 1978) pp. 37–44. · Zbl 0405.90072
[8] B. Brosowski and F. Deutsch, ”Some new continuity concepts for metric projections”,Bulletin of the American Mathematical Society 78 (1972) 974–978. · Zbl 0255.41029 · doi:10.1090/S0002-9904-1972-13073-8
[9] G.B. Dantzig, J. Folkman and N. Shapiro, ”On the continuity of the minimum set of continuous function”,Journal of Mathematical Analysis and Applications 17 (1967) 519–548. · Zbl 0153.49201 · doi:10.1016/0022-247X(67)90139-4
[10] I.I. Eremin and N.N. Astafiev,Introduction to the theory of linear and convex programming (Nauka, Moscow, 1976). (In Russian.)
[11] J.P. Evans and F.J. Gould, ”Stability in nonlinear programming”,Operations Research 18 (1970) 107–118. · Zbl 0232.90057 · doi:10.1287/opre.18.1.107
[12] A. Fahmideh-Vojdani, ”Analysis and continuous simulation of secure-economic operation of power systems”, Ph.D. Thesis, Department of Electrical Engineering, McGill University (Montreal, Canada, 1982).
[13] A. Fahmideh-Vojdani and F.D. Galiana, ”The continuation method and its application in power system planning and operation”, presented at CIGRE Symposium on Control Applications for Power System Security, Florence, Italy, September 1983.
[14] F.D. Galiana, A. Fahmideh-Vojdani, M. Huneault and m. Juman, ”Optimal power systems dispatch through the continuation method: Variation of functional inequality limits”, invited paper at the International Symposium on Circuits and Systems, Houston, Texas, June 1983.
[15] C.B. Garcia and F.J. Gould, ”Scalar labelings for homotopy paths”,Mathematical Programming 17 (1979) 184–197 · Zbl 0445.65035 · doi:10.1007/BF01588243
[16] A. Guignard, Generalized Kuhn-Tucker conditions for mathematical programming problems in a Banach space,SIAM Journal on Control 7 (1969) 232–241. · Zbl 0182.53101 · doi:10.1137/0307016
[17] F.S. Hillier and G.J. Lieberman,Introduction to Operations Research (3rd edition), (Holden-Day, Inc., San Francisco, 1980). · Zbl 0462.90015
[18] D.S. Jacobson, ”Stability of bi-convex models in optimization”, M.Sc. thesis, McGill University (Montreal, Canada, 1983).
[19] W. Krabs, ”Stetige Abänderung der Daten bei nichtlinearer Optimierung und ihre Konsequenzen”,Operations Research Verfahren XXV 1 (1977) 93–113. · Zbl 0401.90094
[20] A. Leger, Stability of a mathematical model for admissions planning at university, M.Sc. Thesis, McGill University (Montreal, Canada, 1983).
[21] J. Lisy, ”Methods of finding redundant constraints in linear programming”,Ekonomicko-Matematicky obzor (1971) 285–298. (in Czech.)
[22] D.H. Martin, ”On the continuity of the maximum in parametric linear programming”,Journal of Optimization Theory and Applications 17 (1975) 205–210. · Zbl 0298.90041 · doi:10.1007/BF00933875
[23] A. Morgan, ”The continuation method”,Spectrum, The Institute of Electrical and Electronics Engineers, Inc. (June 1982).
[24] M.Z. Nashed, ”Perturbation analysis of ill-posed problems”, presented at the Third Symposium on Mathematical Programming with Data Perturbations, The George Washington University, Washington, DC, May 21–22, 1981. · Zbl 0454.90079
[25] F. Nožička, J. Guddat, H. Hollatz and B. Bank,Theorie der linearen parametrische Optimierung (Akademie-Verlag, Berlin, 1974). · Zbl 0284.90053
[26] Pretoria News, July 8, 1983.
[27] S. Robinson, ”A characterization of stability in linear programming”,Operations Research 25 (1977) 435–447. · Zbl 0373.90045 · doi:10.1287/opre.25.3.435
[28] B. Stott, ”Review of load flow calculation methods”,IEEE Proceedings 62 No. 7 (1974) 916–929. · doi:10.1109/PROC.1974.9544
[29] B. Stott and J.L. Marinho, ”Linear programming for power system network security applications”,IEEE Transactions, Power Apparatus and Systems PAS 98 (1979) 837–848. · doi:10.1109/TPAS.1979.319296
[30] J. Telgen, ”Identifying redundant constraints and implicit equalities in systems of linear constraints”,Management Science 29 (1983) 1209–1222. · Zbl 0527.90066 · doi:10.1287/mnsc.29.10.1209
[31] L.I. Trudzik, ”Optimization in abstract spaces”, Ph.D. Thesis, The University of Melbourne (Melbourne, Australia, 1983). · Zbl 0502.90067
[32] S. Zlobec, R. Gardner and A. Ben-Israel, ”Regions of stability for arbitrarily perturbed convex program”, in: A. Fiacco, ed., Mathematical programming with data perturbations (M. Dekker, New York 1982) pp 69–89. · Zbl 0494.49027
[33] S. Zlobec, ”Characterizing an optimal input in perturbed convex programming”,Mathematical Programming 25 (1983) 109–121. · Zbl 0505.90077 · doi:10.1007/BF02591721
[34] S. Zlobec, ”Stable planning by linear and convex models”,Mathematische Operationsforschung und Statistik, Series Optimization 14 (1983) 519–535. · Zbl 0549.90081
[35] S. Zlobec, ”Feasible direction methods in the absence of Slater’s condition”,Mathematische Operationsforschung und Statistik, Series Optimization 9 (1978) 185–196. · Zbl 0395.90061
[36] S. Zlobec, ”Regions of stability for ill-posed convex programs”,Aplikace Matematiky 27 (1982) 176–191. · Zbl 0482.90073
[37] S. Zlobec, ”Input optimization: II. Numerical methods”. (In preparation.)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.