Control of wind-induced response of transmission tower-line system by using magnetorheological dampers. (English) Zbl 1444.74033

Summary: Transmission tower-line system is a high-rise structure with low damping and it is therefore prone to strong wind excitation. In this paper, the control of wind-induced response of transmission tower-line system is carried out by using magnetorheological (MR) dampers. The effects of brace stiffness of damper are introduced and a multi-degree-of-freedom (MDOF) model is developed for both in-plane/out-of-plane vibration of transmission tower-line system. Two semi-active control strategies are proposed for the vibration mitigation of tower-line system. The first one is based on fixed increment of controllable damper force whereas the second one is a clipped-optimal strategy based on fuzzy control principle. The optimal parameters of the MDOF model of transmission line are investigated. A real transmission tower-line system constructed in China is taken as an example to examine the feasibility and reliability of the proposed approach. A parametric study is conducted for the effects of brace stiffness of MR damper, wind loading intensity, and parameters of MR fluids on the control performance. The results demonstrate that the incorporation of MR dampers into the transmission tower-line system can substantially suppress the wind-induced responses of transmission tower if the damper parameters are optimally determined. The performance of the two kinds of semi-active control approaches is better than that of a passive control approach.


74K05 Strings
74H50 Random vibrations in dynamical problems in solid mechanics
93C95 Application models in control theory
93D15 Stabilization of systems by feedback
Full Text: DOI


[1] Yang L., Eng. Mech. 13 pp 46–
[2] Code for Seismic Design of Electrical Facilities (1996)
[3] Kempner L. J., Shock Vib. Bull. 50 pp 113–
[4] DOI: 10.1061/(ASCE)0733-9445(1984)110:6(1321) · doi:10.1061/(ASCE)0733-9445(1984)110:6(1321)
[5] DOI: 10.1016/0141-0296(88)90049-1 · doi:10.1016/0141-0296(88)90049-1
[6] DOI: 10.1016/0141-0296(92)90009-F · doi:10.1016/0141-0296(92)90009-F
[7] DOI: 10.1061/(ASCE)0733-9399(1997)123:9(897) · doi:10.1061/(ASCE)0733-9399(1997)123:9(897)
[8] DOI: 10.1061/(ASCE)0733-9445(2003)129:7(845) · doi:10.1061/(ASCE)0733-9445(2003)129:7(845)
[9] DOI: 10.1002/(SICI)1096-9845(200005)29:5<557::AID-EQE922>3.0.CO;2-X · doi:10.1002/(SICI)1096-9845(200005)29:5<557::AID-EQE922>3.0.CO;2-X
[10] DOI: 10.1115/1.2823348 · doi:10.1115/1.2823348
[11] DOI: 10.1115/1.2823349 · doi:10.1115/1.2823349
[12] Irvine H. M., Cable Structures (1981)
[13] Li H. N., Chin. J. Civil Eng. 30 pp 28–
[14] Clough R. W., Dynamic of Structures (2003)
[15] DOI: 10.1016/0022-460X(72)90600-1 · doi:10.1016/0022-460X(72)90600-1
[16] DOI: 10.1061/(ASCE)0733-9399(1996)122:8(778) · doi:10.1061/(ASCE)0733-9399(1996)122:8(778)
[17] DOI: 10.12989/was.2006.9.3.231 · doi:10.12989/was.2006.9.3.231
[18] Harris J., Fuzzy Logic Applications in Engineering Science (2006)
[19] DOI: 10.1016/S0045-7825(99)00300-X · Zbl 0995.74047 · doi:10.1016/S0045-7825(99)00300-X
[20] DOI: 10.1002/(SICI)1096-9845(1998110)27:11<1267::AID-EQE782>3.0.CO;2-D · doi:10.1002/(SICI)1096-9845(1998110)27:11<1267::AID-EQE782>3.0.CO;2-D
[21] DOI: 10.1007/BF00045000 · doi:10.1007/BF00045000
[22] DOI: 10.1016/j.engstruct.2007.03.006 · doi:10.1016/j.engstruct.2007.03.006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.