×

zbMATH — the first resource for mathematics

PBW filtration and bases for irreducible modules in type \({\text{\textsf{A}}}_{n}\). (English) Zbl 1237.17011
The universal enveloping algebra \(U(\mathfrak{a})\) of a finite dimensional Lie algebra \(\mathfrak{a}\) has a natural filtration by monomial degrees. Let \(\mathfrak{g}=\mathfrak{sl}_n\) with a fixed standard triangular decomposition \(\mathfrak{g}=\mathfrak{n}_-\oplus\mathfrak{h}\oplus\mathfrak{n}_+\). For a dominant integral \(\lambda\in\mathfrak{h}^*\) let \(V(\lambda)\) be the corresponding simple finite dimensional \(\mathfrak{g}\)-module with a fixed primitive vector. Applying the components of the degree filtration of \(U(\mathfrak{n}_-)\) to the primitive vector induces a filtration on \(V(\lambda)\).
The main object of the study in the paper under review is the associated graded vector space \(\mathrm{gr}\,V(\lambda)\). The latter is a cyclic module over the symmetric algebra \(S(\mathfrak{n}_-)\) over \(\mathfrak{n}_-\) and hence has the form \(\mathfrak{n}_-/I(\lambda)\) for some ideal \(I(\lambda)\). The first main result of the paper gives a concrete description of \(I(\lambda)\). The second main result of the paper gives an explicit monomial basis of \(\mathrm{gr}\,V(\lambda)\), construction of which uses, in particular, combinatorics of Dyck paths.

MSC:
17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)
17B67 Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] F. Ardila, T. Bliem, D. Salazar, Gelfand-Tsetlin polytopes and Feigin-Fourier-Littelmann-Vinberg polytopes as marked poset polytopes, arXiv:1008.2365. · Zbl 1234.52009
[2] N. Bourbaki, Groupes et Algèbres de Lie, Chaps. IV, V, VI, Actualités Scientifiques et Industrielles, No. 1337, Hermann, Paris, 1968. Russian transl.: Н. Бурбаки, Груnnы u алгебры Лu, гл. IV, V, VI, Мир, M., 1972.
[3] R.-K. Brylinski, Limits of weight spaces, Lusztig’s q-analogs and fiberings of adjoint orbits, J. Amer. Math. Soc. 2 (1989), no. 3, 517–533. · Zbl 0729.17005
[4] E. Feigin, The PBW filtration, Represent. Theory 13 (2009), 165–181. · Zbl 1229.17026 · doi:10.1090/S1088-4165-09-00349-5
[5] E. Feigin, The PBW filtration, Demazure modules and toroidal current algebras, SIGMA 4 (2008), 070, 21 pp. · Zbl 1215.17015
[6] B. Feigin, E. Feigin, M. Jimbo, T. Miwa, Y. Takeyama, A 1,3-filtration on the Virasoro minimal series M(p, p’) with 1 < p’=p < 2, Publ. Res. Inst. Math. Sci. 44 (2008), no. 2, 213–257. · Zbl 1162.17025 · doi:10.2977/prims/1210167327
[7] B. Feigin, E. Feigin, P. Littelmann, Zhu’s algebras, C 2-algebras and abelian radicals, arXiv:0907.3962 (2009). · Zbl 1292.17024
[8] E. Feigin, P. Littelmann, Zhu’s algebras, C 2-algebras and abelian radicals, arXiv:0907.3962 (2009). · Zbl 1292.17024
[9] W. Fulton, J. Harris, Representation Theory, Graduate Texts in Mathematics, Springer-Verlag, New York, 1991. · Zbl 0744.22001
[10] M. R. Gaberdiel, T. Gannon, Zhu’s algebra, the C 2 algebra, and twisted modules, arXiv:0811.3892. · Zbl 1232.17038
[11] И. М. Гельфанд, М. Л. Цетлин, Конечномерные nредсmавленuя груnnы унuмодулярных маmрuц, ДАН СССР 71 (1950), 825–828. English transl. I. M. Gelfand, M. L. Tsetlin, Finite-dimensional representations of the group of unimodular matrices, I. M. Gelfand, Collected Papers, Vol. II, Springer-Verlag, Berlin, 1988, pp. 653–656. · Zbl 1154.68045
[12] J. E. Humphreys, Introduction to Lie algebras and Representation Theory, Graduate Texts in Mathematics, Vol. 9, Springer-Verlag, New York, 1970. Russian transl.: Дж. Хамфрис, Введенuе в mеорuю алгебр Лu u uх nредсмавленuй, МЦНМО, М., 2003.
[13] B. Kostant, Lie groups representations on polynomial rings, Amer. J. Math, 85, 327–404 (1963). · Zbl 0124.26802 · doi:10.2307/2373130
[14] E. Vinberg, On some canonical bases of representation spaces of simple Lie algebras, Conference Talk, Bielefeld, 2005.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.