×

zbMATH — the first resource for mathematics

A hybrid approach to conjunctive partial evaluation of logic programs. (English) Zbl 1326.68064
Alpuente, María (ed.), Logic-based program synthesis and transformation. 20th international symposium, LOPSTR 2010, Hagenberg, Austria, July 23–25, 2010. Revised selected papers. Berlin: Springer (ISBN 978-3-642-20550-7/pbk). Lecture Notes in Computer Science 6564, 200-214 (2011).
Summary: Conjunctive partial deduction is a well-known technique for the partial evaluation of logic programs. The original formulation follows the so called online approach where all termination decisions are taken on-the-fly. In contrast, offline partial evaluators first analyze the source program and produce an annotated version so that the partial evaluation phase should only follow these annotations to ensure the termination of the process. In this work, we introduce a lightweight approach to conjunctive partial deduction that combines some of the advantages of both online and offline styles of partial evaluation.
For the entire collection see [Zbl 1214.68005].

MSC:
68N17 Logic programming
Software:
DPPD; ECCE; LOGEN
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ben-Amram, A., Codish, M.: A SAT-Based Approach to Size Change Termination with Global Ranking Functions. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 218–232. Springer, Heidelberg (2007) · Zbl 1134.68398 · doi:10.1007/978-3-540-78800-3_16
[2] Bruynooghe, M., De Schreye, D., Martens, B.: A General Criterion for Avoiding Infinite Unfolding during Partial Deduction of Logic Programs. In: Saraswat, V., Ueda, K. (eds.) Proc. 1991 Int’l Symp. on Logic Programming, pp. 117–131 (1991) · Zbl 0782.68024
[3] Christensen, N.H., Glück, R.: Offline Partial Evaluation Can Be as Accurate as Online Partial Evaluation. ACM Transactions on Programming Languages and Systems 26(1), 191–220 (2004) · Zbl 05459247 · doi:10.1145/963778.963784
[4] Codish, M., Taboch, C.: A Semantic Basis for the Termination Analysis of Logic Programs. Journal of Logic Programming 41(1), 103–123 (1999) · Zbl 0948.68114 · doi:10.1016/S0743-1066(99)00006-0
[5] De Schreye, D., Glück, R., Jørgensen, J., Leuschel, M., Martens, B., Sørensen, M.H.: Conjunctive Partial Deduction: Foundations, Control, Algorihtms, and Experiments. Journal of Logic Programming 41(2&3), 231–277 (1999) · Zbl 0944.68025 · doi:10.1016/S0743-1066(99)00030-8
[6] Hruza, J., Stepánek, P.: Speedup of logic programs by binarization and partial deduction. TPLP 4(3), 355–380 (2004)
[7] Jones, N.D., Gomard, C.K., Sestoft, P.: Partial Evaluation and Automatic Program Generation. Prentice-Hall, Englewood Cliffs (1993) · Zbl 0875.68290
[8] Leuschel, M.: Homeomorphic Embedding for Online Termination of Symbolic Methods. In: Mogensen, T.Æ., Schmidt, D.A., Sudborough, I.H. (eds.) The Essence of Computation. LNCS, vol. 2566, pp. 379–403. Springer, Heidelberg (2002) · Zbl 1026.68028 · doi:10.1007/3-540-36377-7_17
[9] Leuschel, M.: The DPPD (Dozens of Problems for Partial Deduction) Library of Benchmarks (2007), http://www.ecs.soton.ac.uk/ mal/systems/dppd.html
[10] Leuschel, M., Elphick, D., Varea, M., Craig, S., Fontaine, M.: The Ecce and Logen Partial Evaluators and Their Web Interfaces. In: Proc. of PEPM 2006, pp. 88–94. IBM Press (2006) · doi:10.1145/1111542.1111557
[11] Leuschel, M., Vidal, G.: Fast Offline Partial Evaluation of Large Logic Programs. In: Hanus, M. (ed.) LOPSTR 2008. LNCS, vol. 5438, pp. 119–134. Springer, Heidelberg (2009) · Zbl 1185.68164 · doi:10.1007/978-3-642-00515-2_9
[12] Lloyd, J.W., Shepherdson, J.C.: Partial Evaluation in Logic Programming. Journal of Logic Programming 11, 217–242 (1991) · Zbl 0741.68030 · doi:10.1016/0743-1066(91)90027-M
[13] Somogyi, Z.: A System of Precise Modes for Logic Programs. In: Shapiro, E.Y. (ed.) Proc. of Third Int’l Conf. on Logic Programming, pp. 769–787. The MIT Press, Cambridge (1986)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.