×

zbMATH — the first resource for mathematics

A proposal for a standard interface between Monte Carlo tools and one-loop programs. (English) Zbl 1219.82008
Summary: Many highly developed Monte Carlo tools for the evaluation of cross sections based on tree matrix elements exist and are used by experimental collaborations in high energy physics. As the evaluation of one-loop matrix elements has recently been undergoing enormous progress, the combination of one-loop matrix elements with existing Monte Carlo tools is on the horizon. This would lead to phenomenological predictions at the next-to-leading order level. This note summarises the discussion of the next-to-leading order multi-leg (NLM) working group on this issue which has been taking place during the workshop on Physics at TeV Colliders at Les Houches, France, in June 2009. The result is a proposal for a standard interface between Monte Carlo tools and one-loop matrix element programs.
Dedicated to the memory of, and in tribute to, Thomas Binoth, who led the effort to develop this proposal for Les Houches 2009. Thomas led the discussions, set up the subgroups, collected the contributions, and wrote and edited this paper. He made a promise that the paper would be on the arXiv the first week of January, and we are faithfully fulfilling his promise. In his honour, we would like to call this the Binoth Les Houches Accord.

MSC:
82-04 Software, source code, etc. for problems pertaining to statistical mechanics
82-08 Computational methods (statistical mechanics) (MSC2010)
82B80 Numerical methods in equilibrium statistical mechanics (MSC2010)
82C80 Numerical methods of time-dependent statistical mechanics (MSC2010)
81V35 Nuclear physics
81U35 Inelastic and multichannel quantum scattering
PDF BibTeX Cite
Full Text: DOI
References:
[1] Alwall, J., Madgraph/madevent v4: the new web generation, Jhep, 0709, 028, (2007)
[2] Cafarella, A.; Papadopoulos, C.G.; Worek, M., Helac-phegas: A generator for all parton level processes, Comput. phys. commun., 180, 1941-1955, (2009)
[3] Dobbs, M.A., LES houches guidebook to Monte Carlo generators for hadron collider physics
[4] Gleisberg, T.; Hoche, S., Comix, a new matrix element generator, Jhep, 0812, 039, (2008)
[5] Kilian, W.; Ohl, T.; Reuter, J., WHIZARD: simulating multi-particle processes at LHC and ILC
[6] Krauss, F.; Kuhn, R.; Soff, G., AMEGIC++ 1.0: A matrix element generator in C++, Jhep, 0202, 044, (2002)
[7] Maltoni, F.; Stelzer, T., Madevent: automatic event generation with madgraph, Jhep, 0302, 027, (2003)
[8] Mangano, M.L.; Moretti, M.; Piccinini, F.; Pittau, R.; Polosa, A.D., ALPGEN, a generator for hard multiparton processes in hadronic collisions, Jhep, 0307, 001, (2003)
[9] Papadopoulos, C.G.; Worek, M., HELAC: A Monte Carlo generator for multi-jet processes
[10] Pukhov, A., Comphep: A package for evaluation of Feynman diagrams and integration over multi-particle phase space, User’s manual for version 33
[11] Stelzer, T.; Long, W.F., Automatic generation of tree level helicity amplitudes, Comput. phys. commun., 81, 357-371, (1994)
[14] Fujimoto, J., GRACE/SUSY: automatic generation of tree amplitudes in the minimal supersymmetric standard model, Comput. phys. commun., 153, 106-134, (2003)
[15] Bahr, M., Herwig++ physics and manual, Eur. phys. J. C, 58, 639-707, (2008)
[16] Gleisberg, T., Event generation with SHERPA 1.1, Jhep, 0902, 007, (2009)
[17] Sjostrand, T.; Mrenna, S.; Skands, P.Z., PYTHIA 6.4 physics and manual, Jhep, 0605, 026, (2006) · Zbl 1368.81015
[18] Sjostrand, T.; Mrenna, S.; Skands, P.Z., A brief introduction to PYTHIA 8.1, Comput. phys. commun., 178, 852-867, (2008) · Zbl 1196.81038
[19] Corcella, G., HERWIG 6: an event generator for hadron emission reactions with interfering gluons (including supersymmetric processes), Jhep, 0101, 010, (2001)
[20] Corcella, G., Herwig 6.5 release note
[21] Berger, C.F., Precise predictions for \(W + 3\) jet production at hadron colliders, Phys. rev. lett., 102, 222001, (2009)
[22] Berger, C.F., Next-to-leading order QCD predictions for \(W + 3\)-jet distributions at hadron colliders, Phys. rev. D, 80, 074036, (2009)
[23] Keith Ellis, R.; Melnikov, K.; Zanderighi, G., \(W + 3\) jet production at the tevatron, Phys. rev. D, 80, 094002, (2009)
[24] Melnikov, K.; Zanderighi, G., \(W + 3\) jet production at the LHC as a signal or background
[25] Campbell, J.M.; Ellis, R.K.; Zanderighi, G., Next-to-leading order Higgs+2 jet production via gluon fusion, Jhep, 0610, 028, (2006)
[26] Campbell, J.M.; Keith Ellis, R.; Zanderighi, G., Next-to-leading order predictions for \(W W + 1\) jet distributions at the LHC, Jhep, 0712, 056, (2007)
[27] Ciccolini, M.; Denner, A.; Dittmaier, S., Strong and electroweak corrections to the production of Higgs+2 jets via weak interactions at the LHC, Phys. rev. lett., 99, 161803, (2007)
[28] Bredenstein, A.; Denner, A.; Dittmaier, S.; Pozzorini, S., NLO QCD corrections to \(p p \rightarrow t \overline{t} b \overline{b} + X\) at the LHC, Phys. rev. lett., 103, 012002, (2009)
[29] Dittmaier, S.; Kallweit, S.; Uwer, P., NLO QCD corrections to \(p p / p \overline{p} \rightarrow W W + \operatorname{jet} + X\) including leptonic W-boson decays, Nucl. phys. B, 826, 18-70, (2010) · Zbl 1203.81174
[30] Dittmaier, S.; Uwer, P.; Weinzierl, S., NLO QCD corrections to t anti-t + jet production at hadron colliders, Phys. rev. lett., 98, 262002, (2007)
[31] Dittmaier, S.; Kallweit, S.; Uwer, P., NLO QCD corrections to \(W W +\)jet production at hadron colliders, Phys. rev. lett., 100, 062003, (2008)
[32] Andersen, J.R.; Binoth, T.; Heinrich, G.; Smillie, J.M., Loop induced interference effects in Higgs boson plus two jet production at the LHC, Jhep, 0802, 057, (2008)
[33] Binoth, T.; Ossola, G.; Papadopoulos, C.G.; Pittau, R., NLO QCD corrections to tri-boson production, Jhep, 0806, 082, (2008)
[34] Binoth, T., Next-to-leading order QCD corrections to \(p p \rightarrow b \overline{b} b \overline{b} + X\) at the LHC: the quark induced case
[35] Binoth, T.; Gleisberg, T.; Karg, S.; Kauer, N.; Sanguinetti, G., NLO QCD corrections to \(Z Z +\)jet production at hadron colliders
[36] Campanario, F.; Hankele, V.; Oleari, C.; Prestel, S.; Zeppenfeld, D., QCD corrections to charged triple vector boson production with leptonic decay, Phys. rev. D, 78, 094012, (2008)
[37] Campanario, F.; Englert, C.; Spannowsky, M.; Zeppenfeld, D., NLO-QCD corrections to Wγj production, Europhys. lett., 88, 11001, (2009)
[38] Jager, B.; Oleari, C.; Zeppenfeld, D., Next-to-leading order QCD corrections to \(W + W + j j\) and \(W - W - j j\) production via weak-boson fusion, Phys. rev. D, 80, 034022, (2009)
[39] Bozzi, G.; Campanario, F.; Hankele, V.; Zeppenfeld, D., NLO QCD corrections to \(W^+ W^- \gamma\) and ZZγ production with leptonic decays
[40] Bevilacqua, G.; Czakon, M.; Papadopoulos, C.G.; Pittau, R.; Worek, M., Assault on the NLO wishlist: \(p p \rightarrow t t b b\), Jhep, 0909, 109, (2009)
[41] Arnold, K., VBFNLO: A parton level Monte Carlo for processes with electroweak bosons, Comput. phys. commun., 180, 1661-1670, (2009)
[42] Hahn, T.; Perez-Victoria, M., Automatized one-loop calculations in four and D dimensions, Comput. phys. commun., 118, 153-165, (1999)
[43] Kurihara, Y., QCD event generators with next-to-leading order matrix-elements and parton showers, Nucl. phys. B, 654, 301-319, (2003) · Zbl 1010.81511
[44] Belanger, G., Automatic calculations in high energy physics and grace at one-loop, Phys. rep., 430, 117-209, (2006)
[45] Ellis, R.K.; Giele, W.T.; Kunszt, Z., A numerical unitarity formalism for evaluating one-loop amplitudes, Jhep, 0803, 003, (2008)
[46] Ossola, G.; Papadopoulos, C.G.; Pittau, R., Cuttools: A program implementing the OPP reduction method to compute one-loop amplitudes, Jhep, 0803, 042, (2008)
[47] Binoth, T.; Guillet, J.P.; Heinrich, G.; Pilon, E.; Reiter, T., Golem95: A numerical program to calculate one-loop tensor integrals with up to six external legs, Comput. phys. commun., 180, 2317-2330, (2009) · Zbl 1197.81004
[48] Berger, C.F., An automated implementation of on-shell methods for one-loop amplitudes, Phys. rev. D, 78, 036003, (2008)
[49] Lazopoulos, A., Multi-gluon one-loop amplitudes numerically
[50] Winter, J.-C.; Giele, W.T., Calculating gluon one-loop amplitudes numerically
[51] van Hameren, A.; Papadopoulos, C.G.; Pittau, R., Automated one-loop calculations: A proof of concept, Jhep, 0909, 106, (2009)
[52] Catani, S.; Seymour, M.H.; Trocsanyi, Z., Regularization scheme independence and unitarity in QCD cross sections, Phys. rev. D, 55, 6819-6829, (1997)
[53] Kunszt, Z.; Signer, A.; Trocsanyi, Z., One loop helicity amplitudes for all 2 → 2 processes in QCD and \(N = 1\) supersymmetric Yang-Mills theory, Nucl. phys. B, 411, 397-442, (1994)
[54] Smith, J.; van Neerven, W.L., The difference between n-dimensional regularization and n-dimensional reduction in QCD, Eur. phys. J. C, 40, 199-203, (2005)
[55] Signer, A.; Stockinger, D., Using dimensional reduction for hadronic collisions, Nucl. phys. B, 808, 88-120, (2009) · Zbl 1192.81404
[56] Catani, S.; Seymour, M.H., A general algorithm for calculating jet cross sections in NLO QCD, Nucl. phys. B, 485, 291-419, (1997)
[57] Phaf, L.; Weinzierl, S., Dipole formalism with heavy fermions, Jhep, 0104, 006, (2001)
[58] Catani, S.; Dittmaier, S.; Seymour, M.H.; Trocsanyi, Z., The dipole formalism for next-to-leading order QCD calculations with massive partons, Nucl. phys. B, 627, 189-265, (2002) · Zbl 0990.81140
[59] Frixione, S.; Kunszt, Z.; Signer, A., Three-jet cross sections to next-to-leading order, Nucl. phys. B, 467, 399-442, (1996)
[60] Frixione, S., A general approach to jet cross sections in QCD, Nucl. phys. B, 507, 295-314, (1997)
[61] Seymour, M.H.; Tevlin, C., Tevjet: A general framework for the calculation of jet observables in NLO QCD
[62] Gleisberg, T.; Krauss, F., Automating dipole subtraction for QCD NLO calculations, Eur. phys. J. C, 53, 501-523, (2008)
[63] Frederix, R.; Gehrmann, T.; Greiner, N., Automation of the dipole subtraction method in madgraph/madevent, Jhep, 0809, 122, (2008)
[64] Czakon, M.; Papadopoulos, C.G.; Worek, M., Polarizing the dipoles, Jhep, 0908, 085, (2009)
[65] Hasegawa, K.; Moch, S.; Uwer, P., Autodipole - automated generation of dipole subtraction terms · Zbl 1219.81244
[66] Frederix, R.; Frixione, S.; Maltoni, F.; Stelzer, T., Automation of next-to-leading order computations in QCD: the FKS subtraction, Jhep, 0910, 003, (2009)
[67] Skands, P.Z., SUSY LES houches accord: interfacing SUSY spectrum calculators, decay packages, and event generators, Jhep, 0407, 036, (2004)
[68] Alwall, J., A LES houches interface for BSM generators
[69] Allanach, B., SUSY LES houches accord 2, Comput. phys. commun., 180, 8-25, (2009)
[71] Denner, A.; Dittmaier, S.; Roth, M.; Wackeroth, D., Predictions for all processes \(e^+ e^- \rightarrow 4\) fermions+γ, Nucl. phys. B, 560, 33-65, (1999)
[72] Denner, A.; Dittmaier, S.; Roth, M.; Wieders, L.H., Electroweak corrections to charged-current \(e^+ e^- \rightarrow 4\) fermion processes: technical details and further results, Nucl. phys. B, 724, 247-294, (2005)
[73] Stuart, R.G., Gauge invariance, analyticity and physical observables at the \(Z_0\) resonance, Phys. lett. B, 262, 113-119, (1991)
[74] Aeppli, A.; Cuypers, F.; van Oldenborgh, G.J., \(\mathcal{O}(\Gamma)\) corrections to W pair production in e+e− and γγ collisions, Phys. lett. B, 314, 413-420, (1993)
[75] Aeppli, A.; van Oldenborgh, G.J.; Wyler, D., Unstable particles in one loop calculations, Nucl. phys. B, 428, 126-146, (1994)
[76] Veltman, H.G.J., Mass and width of unstable gauge bosons, Z. phys. C, 62, 35-52, (1994)
[77] Dittmaier, S., A general approach to photon radiation off fermions, Nucl. phys. B, 565, 69-122, (2000)
[78] Dittmaier, S.; Kabelschacht, A.; Kasprzik, T., Polarized QED splittings of massive fermions and dipole subtraction for non-collinear-safe observables, Nucl. phys. B, 800, 146-189, (2008)
[79] Aoki, K.I.; Hioki, Z.; Konuma, M.; Kawabe, R.; Muta, T., Electroweak theory. framework of on-shell renormalization and study of higher order effects, Prog. theor. phys. suppl., 73, 1-225, (1982)
[80] Bohm, M.; Spiesberger, H.; Hollik, W., On the one loop renormalization of the electroweak standard model and its application to leptonic processes, Fortschr. phys., 34, 687-751, (1986)
[81] Denner, A., Techniques for calculation of electroweak radiative corrections at the one loop level and results for W physics at LEP-200, Fortschr. phys., 41, 307-420, (1993)
[82] Dittmaier, S.; Kramer, M., Electroweak radiative corrections to W-boson production at hadron colliders, Phys. rev. D, 65, 073007, (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.