×

Testing the Nambu-Goldstone hypothesis for quarks and leptons at the LHC. (English) Zbl 1214.81336

Summary: The hierarchy of the Yukawa couplings is an outstanding problem of the standard model. We present a class of models in which the first and second generation fermions are SUSY partners of pseudo-Nambu-Goldstone bosons that parameterize a non-compact Kähler manifold, explaining the small values of these fermion masses relative to those of the third generation. We also provide an example of such a model. We find that various regions of the parameter space in this scenario can give the correct dark matter abundance, and that nearly all of these regions evade other phenomenological constraints. We show that for \(m_{\tilde{g}} \sim 700\) GeV, model points from these regions can be easily distinguished from other mSUGRA points at the LHC with only \(7 fb^{ - 1}\) of integrated luminosity at 14 TeV. The most striking signatures are a dearth of \(b\)- and \(\tau \)-jets, a great number of multi-lepton events, and either an “inverted” slepton mass hierarchy, narrowed slepton mass hierarchy, or characteristic small-\(\mu \) spectrum.

MSC:

81V22 Unified quantum theories
81T60 Supersymmetric field theories in quantum mechanics
81V17 Gravitational interaction in quantum theory
83E50 Supergravity
32Q15 Kähler manifolds
83E15 Kaluza-Klein and other higher-dimensional theories
83F05 Relativistic cosmology
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Buchmüller, W.; Love, ST; Peccei, RD; Yanagida, T., Quasi Goldstone fermions, Phys. Lett, B 115, 233, (1982)
[2] Buchmüller, W.; Peccei, RD; Yanagida, T., Quasi Nambu-Goldstone fermions, Nucl. Phys, B 227, 503, (1983)
[3] Adler, SL, Consistency conditions on the strong interactions implied by a partially conserved axial vector current, Phys. Rev, 137, b1022, (1965)
[4] Bagger, J.; Witten, E., The gauge invariant supersymmetric nonlinear σ-model, Phys. Lett, B 118, 103, (1982)
[5] Kugo, T.; Ojima, I.; Yanagida, T., Superpotential symmetries and pseudonambu-Goldstone supermultiplets, Phys. Lett, B 135, 402, (1984)
[6] Bando, M.; Kuramoto, T.; Maskawa, T.; Uehara, S., Nonlinear renormalization in supersymmetric theories, Prog. Theor. Phys, 72, 313, (1984)
[7] T. Kugo and T.T. Yanagida, Coupling supersymmetric nonlinear σ-models to supergravity, arXiv:1003.5985 [SPIRES].
[8] Evans, JL; Morrissey, DE; Wells, JD, Higgs boson exempt no-scale supersymmetry and its collider and cosmology implications, Phys. Rev. D, 75, 055017, (2007)
[9] Ellis, JR; Lahanas, AB; Nanopoulos, DV; Tamvakis, K., No-scale supersymmetric standard model, Phys. Lett, B 134, 429, (1984)
[10] Ellis, J.; Kounnas, C.; Nanopoulos, DV, No scale supersymmetric guts, Nucl. Phys, B 247, 373, (1984)
[11] Kugo, T.; Uehara, S.; Yanagida, T., Weak bosons as composite gauge fields of hidden symmetries, Phys. Lett, B 147, 321, (1984)
[12] Goto, T.; Yanagida, T., Nonlinear σ-model coupled to a broken supergravity, Prog. Theor. Phys, 83, 1076, (1990)
[13] G. ’t Hooft, Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking., NATO Adv. Study Inst. Ser. B Phys. 59 (1980) 135.
[14] Weinberg, S., Cosmological constraints on the scale of supersymmetry breaking, Phys. Rev. Lett, 48, 1303, (1982)
[15] Reno, MH; Seckel, D., Primordial nucleosynthesis: the effects of injecting hadrons, Phys. Rev, D 37, 3441, (1988)
[16] Dimopoulos, S.; Esmailzadeh, R.; Hall, LJ; Starkman, GD, Limits on late decaying particles from nucleosynthesis, Nucl. Phys, B 311, 699, (1989)
[17] Kawasaki, M.; Kohri, K.; Moroi, T., Big-bang nucleosynthesis and hadronic decay of long-lived massive particles, Phys. Rev, D 71, 083502, (2005)
[18] Chamseddine, AH; Arnowitt, RL; Nath, P., Locally supersymmetric grand unification, Phys. Rev. Lett, 49, 970, (1982)
[19] Allanach, BC, SOFTSUSY: a program for calculating supersymmetric spectra, Comput. Phys. Commun, 143, 305, (2002)
[20] Gondolo, P.; etal., Darksusy: computing supersymmetric dark matter properties numerically, JCAP, 07, 008, (2004)
[21] Bergstrom, L.; Gondolo, P., Limits on direct detection of neutralino dark matter from b → sγ decays, Astropart. Phys, 5, 263, (1996)
[22] Gondolo, P.; Gelmini, G., Cosmic abundances of stable particles: improved analysis, Nucl. Phys, B 360, 145, (1991)
[23] Edsjo, J.; Gondolo, P., Neutralino relic density including coannihilations, Phys. Rev, D 56, 1879, (1997)
[24] Allanach, BC; etal., SUSY LES houches accord 2, Comp. Phys. Commun., 180, 8, (2009)
[25] Heinemeyer, S.; Hollik, W.; Weiglein, G., Feynhiggs: a program for the calculation of the masses of the neutral CP-even Higgs bosons in the MSSM, Comput. Phys. Commun., 124, 76, (2000)
[26] Heinemeyer, S.; Hollik, W.; Weiglein, G., The masses of the neutral CP - even Higgs bosons in the MSSM: accurate analysis at the two loop level, Eur. Phys. J, C 9, 343, (1999)
[27] Degrassi, G.; Heinemeyer, S.; Hollik, W.; Slavich, P.; Weiglein, G., Towards high-precision predictions for the MSSM Higgs sector, Eur. Phys. J, C 28, 133, (2003)
[28] Frank, M.; etal., The Higgs boson masses and mixings of the complex MSSM in the Feynman-diagrammatic approach, JHEP, 02, 047, (2007)
[29] Bechtle, P.; Brein, O.; Heinemeyer, S.; Weiglein, G.; Williams, KE, Higgsbounds: confronting arbitrary Higgs sectors with exclusion bounds from LEP and the tevatron, Comput. Phys. Commun., 181, 138, (2010)
[30] WMAP collaboration, E. Komatsu et al., Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological interpretation, arXiv:1001.4538 [SPIRES].
[31] Kopp, J.; Schwetz, T.; Zupan, J., Global interpretation of direct dark matter searches after CDMS-II results, JCAP, 02, 014, (2010)
[32] Drees, M.; etal., Scrutinizing LSP dark matter at the LHC, Phys. Rev, D 63, 035008, (2001)
[33] Hisano, J.; Nojiri, MM; Sreethawong, W., Discriminating electroweak-ino parameter ordering at the LHC and its impact on LFV studies, JHEP, 06, 044, (2009)
[34] Hisano, J.; Nakayama, K.; Yamanaka, M., Implications of CDMS II result on Higgs sector in the MSSM, Phys. Lett. B, 684, 246, (2010)
[35] J. Ellis and K.A. Olive, Supersymmetric dark matter candidates, arXiv:1001.3651 [SPIRES].
[36] Baer, H.; Belyaev, A.; Krupovnickas, T.; Mustafayev, A., SUSY normal scalar mass hierarchy reconciles (g − 2)(μ), b → sγ and relic density, JHEP, 06, 044, (2004)
[37] S.P. Martin, A supersymmetry primer, hep-ph/9709356 [SPIRES].
[38] Richardson, P., Spin correlations in Monte Carlo simulations, JHEP, 11, 029, (2001)
[39] Barr, AJ, Determining the spin of supersymmetric particles at the LHC using lepton charge asymmetry, Phys. Lett, B 596, 205, (2004)
[40] Goto, T.; Kawagoe, K.; Nojiri, MM, Study of the slepton non-universality at the CERN large hadron collider, Phys. Rev., D 70, 075016, (2004)
[41] ATLAS collaboration, ATLAS detector and physics performance. Technical design report. Vol. 2, ATLAS-TDR-15 [SPIRES].
[42] F.E. Paige, S.D. Protopopescu, H. Baer and X. Tata, ISAJET 7.69: A Monte Carlo event generator for p p,\( \bar{p}p \)and e\^{}{\(+\)}\(e\)\^{}{−}reactions, hep-ph/0312045 [SPIRES].
[43] G. Corcella et al., HERWIG 6.5 release note, hep-ph/0210213 [SPIRES].
[44] E. Richter-Was, AcerDET: A particle level fast simulation and reconstruction package for phenomenological studies on high p_{\(T\)}physics at LHC, hep-ph/0207355 [SPIRES].
[45] O.S. Bruning, et al. (ed.), LHC design report. Vol. I: The LHC main ring, CERN-2004-003-V-1 [SPIRES].
[46] Hinchliffe, I.; Paige, FE; Shapiro, MD; Soderqvist, J.; Yao, W., Precision SUSY measurements at CERN LHC, Phys. Rev, D 55, 5520, (1997)
[47] Bachacou, H.; Hinchliffe, I.; Paige, FE, Measurements of masses in SUGRA models at CERN LHC, Phys. Rev, D 62, 015009, (2000)
[48] B.K. Gjelsten, D.J. Miller, 2 and P. Osland, Measurement of SUSY masses via cascade decays for SPS 1a, JHEP12 (2004) 003 [hep-ph/0410303] [SPIRES].
[49] James, F.; Roos, M., Minuit: s system for function minimization and analysis of the parameter errors and correlations, Comput. Phys. Commun, 10, 343, (1975)
[50] Brun, R.; Rademakers, F., ROOT: an object oriented data analysis framework, Nucl. Instrum. Meth, A 389, 81, (1997)
[51] PAMELA collaboration; Adriani, O.; etal., An anomalous positron abundance in cosmic rays with energies 1.5-100 gev, Nature, 458, 607, (2009)
[52] Cirelli, M.; Kadastik, M.; Raidal, M.; Strumia, A., Model-independent implications of the e+, e-, anti-proton cosmic ray spectra on properties of dark matter, Nucl. Phys. B, 813, 1, (2009)
[53] Adriani, O.; etal., A new measurement of the antiproton-to-proton ux ratio up to 100 gev in the cosmic radiation, Phys. Rev. Lett., 102, 051101, (2009)
[54] Gabrielli, E.; Masiero, A.; Silvestrini, L., Flavour changing neutral currents and CP-violating processes in generalized supersymmetric theories, Phys. Lett, B 374, 80, (1996)
[55] Wolfenstein, L., Parametrization of the Kobayashi-maskawa matrix, Phys. Rev. Lett, 51, 1945, (1983)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.