×

zbMATH — the first resource for mathematics

All tree-level amplitudes in massless QCD. (English) Zbl 1214.81297
Summary: We derive compact analytical formulae for all tree-level color-ordered gauge theory amplitudes involving any number of external gluons and up to four massless quarkanti-quark pairs. A general formula is presented based on the combinatorics of paths along a rooted tree and associated determinants. Explicit expressions are displayed for the next-to-maximally helicity violating (NMHV) and next-to-next-to-maximally helicity violating (NNMHV) gauge theory amplitudes. Our results are obtained by projecting the previously-found expressions for the super-amplitudes of the maximally supersymmetric super Yang-Mills theory (\({\mathcal N} = 4\) SYM) onto the relevant components yielding all gluon-gluino tree amplitudes in \({\mathcal N} = 4\) SYM. We show how these results carry over to the corresponding QCD amplitudes, including massless quarks of different avors as well as a single electroweak vector boson. The public Mathematica package GGT is described, which encodes the results of this work and yields analytical formulae for all \({\mathcal N} = 4\) SYM gluon-gluino trees. These in turn yield all QCD trees with up to four external arbitrary-flavored massless quark-anti-quark pairs.

MSC:
81V05 Strong interaction, including quantum chromodynamics
81T13 Yang-Mills and other gauge theories in quantum field theory
81T60 Supersymmetric field theories in quantum mechanics
05C05 Trees
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Stelzer, T.; Long, WF, Automatic generation of tree level helicity amplitudes, Comput. Phys. Commun., 81, 357, (1994)
[2] Alwall, J.; etal., Madgraph/madevent v4: the new web generation, JHEP, 09, 028, (2007)
[3] A. Pukhov et al., CompHEP: A package for evaluation of Feynman diagrams and integration over multi-particle phase space. User’s manual for version 33, hep-ph/9908288 [SPIRES].
[4] Krauss, F.; Kuhn, R.; Soff, G., AMEGIC++ 1.0: A matrix element generator in C++, JHEP, 02, 044, (2002)
[5] Berends, FA; Giele, WT, Recursive calculations for processes with n gluons, Nucl. Phys., B 306, 759, (1988)
[6] Gleisberg, T.; Hoeche, S., Comix, a new matrix element generator, JHEP, 12, 039, (2008)
[7] Caravaglios, F.; Moretti, M., An algorithm to compute Born scattering amplitudes without Feynman graphs, Phys. Lett., B 358, 332, (1995)
[8] Caravaglios, F.; Mangano, ML; Moretti, M.; Pittau, R., A new approach to multi-jet calculations in hadron collisions, Nucl. Phys., B 539, 215, (1999)
[9] Kanaki, A.; Papadopoulos, CG, HELAC: A package to compute electroweak helicity amplitudes, Comput. Phys. Commun., 132, 306, (2000)
[10] Cafarella, A.; Papadopoulos, CG; Worek, M., Helac-phegas: a generator for all parton level processes, Comput. Phys. Commun., 180, 1941, (2009)
[11] M. Moretti, T. Ohl and J. Reuter, O’Mega: An optimizing matrix element generator, hep-ph/0102195 [SPIRES].
[12] W. Kilian, T. Ohl and J. Reuter, WHIZARD: Simulating Multi-Particle Processes at LHC and ILC, arXiv:0708.4233 [SPIRES].
[13] Parke, SJ; Taylor, TR, Perturbative QCD utilizing extended supersymmetry, Phys. Lett., B 157, 81, (1985)
[14] Kunszt, Z., Combined use of the calkul method and N = 1 supersymmetry to calculate QCD six parton processes, Nucl. Phys., B 271, 333, (1986)
[15] Grisaru, MT; Pendleton, HN; Nieuwenhuizen, P., Supergravity and the S matrix, Phys. Rev., D 15, 996, (1977)
[16] Grisaru, MT; Pendleton, HN, Some properties of scattering amplitudes in supersymmetric theories, Nucl. Phys., B 124, 81, (1977)
[17] Parke, SJ; Taylor, TR, An amplitude for \(n\) gluon scattering, Phys. Rev. Lett., 56, 2459, (1986)
[18] Nair, VP, A current algebra for some gauge theory amplitudes, Phys. Lett., B 214, 215, (1988)
[19] Bern, Z.; Dixon, LJ; Dunbar, DC; Kosower, DA, One-loop n-point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys., B 425, 217, (1994)
[20] Bern, Z.; Dixon, LJ; Dunbar, DC; Kosower, DA, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys., B 435, 59, (1995)
[21] Bern, Z.; Dixon, LJ; Kosower, DA, On-shell methods in perturbative QCD, Annals Phys., 322, 1587, (2007)
[22] C.F. Berger and D. Forde, Multi-Parton Scattering Amplitudes via On-Shell Methods, arXiv:0912.3534 [SPIRES].
[23] Witten, E., Perturbative gauge theory as a string theory in twistor space, Commun. Math. Phys., 252, 189, (2004)
[24] Britto, R.; Cachazo, F.; Feng, B., New recursion relations for tree amplitudes of gluons, Nucl. Phys., B 715, 499, (2005)
[25] Britto, R.; Cachazo, F.; Feng, B.; Witten, E., Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett., 94, 181602, (2005)
[26] Britto, R.; Feng, B.; Roiban, R.; Spradlin, M.; Volovich, A., All split helicity tree-level gluon amplitudes, Phys. Rev., D 71, 105017, (2005)
[27] Arkani-Hamed, N.; Cachazo, F.; Cheung, C.; Kaplan, J., A duality for the S matrix, JHEP, 03, 020, (2010)
[28] Bianchi, M.; Elvang, H.; Freedman, DZ, Generating tree amplitudes in N = 4 SYM and N = 8 SG, JHEP, 09, 063, (2008)
[29] Drummond, JM; Henn, JM, All tree-level amplitudes in N = 4 SYM, JHEP, 04, 018, (2009)
[30] Drummond, JM; Henn, J.; Korchemsky, GP; Sokatchev, E., Dual superconformal symmetry of scattering amplitudes in N = 4 super-Yang-Mills theory, Nucl. Phys., B 828, 317, (2010)
[31] Brandhuber, A.; Heslop, P.; Travaglini, G., A note on dual superconformal symmetry of the N = 4 super Yang-Mills S-matrix, Phys. Rev., D 78, 125005, (2008)
[32] J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Generalized unitarity for N = 4 super-amplitudes, arXiv:0808.0491 [SPIRES].
[33] Drummond, JM; Henn, JM; Plefka, J., Yangian symmetry of scattering amplitudes in N = 4 super Yang-Mills theory, JHEP, 05, 046, (2009)
[34] Drummond, JM, Hidden simplicity of gauge theory amplitudes, Class. Quant. Grav., 27, 214001, (2010)
[35] C.F. Berger et al., Precise Predictions for W + 4 Jet Production at the Large Hadron Collider, arXiv:1009.2338 [SPIRES].
[36] Ossola, G.; Papadopoulos, CG; Pittau, R., Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys., B 763, 147, (2007)
[37] Ossola, G.; Papadopoulos, CG; Pittau, R., Cuttools: a program implementing the OPP reduction method to compute one-loop amplitudes, JHEP, 03, 042, (2008)
[38] Ossola, G.; Papadopoulos, CG; Pittau, R., On the rational terms of the one-loop amplitudes, JHEP, 05, 004, (2008)
[39] Ellis, RK; Giele, WT; Kunszt, Z., A numerical unitarity formalism for evaluating one-loop amplitudes, JHEP, 03, 003, (2008)
[40] Giele, WT; Kunszt, Z.; Melnikov, K., Full one-loop amplitudes from tree amplitudes, JHEP, 04, 049, (2008)
[41] Giele, WT; Zanderighi, G., On the numerical evaluation of one-loop amplitudes: the gluonic case, JHEP, 06, 038, (2008)
[42] Berger, CF; etal., An automated implementation of on-shell methods for one-loop amplitudes, Phys. Rev., D 78, 036003, (2008)
[43] Bern, Z.; Morgan, AG, Massive loop amplitudes from unitarity, Nucl. Phys., B 467, 479, (1996)
[44] Bern, Z.; Dixon, LJ; Dunbar, DC; Kosower, DA, One-loop self-dual and N = 4 super Yang-Mills, Phys. Lett., B 394, 105, (1997)
[45] Anastasiou, C.; Britto, R.; Feng, B.; Kunszt, Z.; Mastrolia, P., D-dimensional unitarity cut method, Phys. Lett., B 645, 213, (2007)
[46] Britto, R.; Feng, B., Integral coefficients for one-loop amplitudes, JHEP, 02, 095, (2008)
[47] Badger, SD, Direct extraction of one loop rational terms, JHEP, 01, 049, (2009)
[48] Bern, Z.; Dixon, LJ; Kosower, DA, Bootstrapping multi-parton loop amplitudes in QCD, Phys. Rev., D 73, 065013, (2006)
[49] Berger, CF; Bern, Z.; Dixon, LJ; Forde, D.; Kosower, DA, Bootstrapping one-loop QCD amplitudes with general helicities, Phys. Rev., D 74, 036009, (2006)
[50] Alday, LF; Henn, JM; Plefka, J.; Schuster, T., Scattering into the fifth dimension of N = 4 super Yang-Mills, JHEP, 01, 077, (2010)
[51] Mangano, ML; Parke, SJ, Multi-parton amplitudes in gauge theories, Phys. Rept., 200, 301, (1991)
[52] Bern, Z.; Dixon, LJ; Kosower, DA, One-loop amplitudes for \(e\)\^{}{+}\(e\)\^{}{−} to four partons, Nucl. Phys., B 513, 3, (1998)
[53] Dinsdale, M.; Ternick, M.; Weinzierl, S., A comparison of efficient methods for the computation of Born gluon amplitudes, JHEP, 03, 056, (2006)
[54] Georgiou, G.; Glover, EWN; Khoze, VV, Non-MHV tree amplitudes in gauge theory, JHEP, 07, 048, (2004)
[55] Binosi, D.; Theussl, L., Jaxodraw: A graphical user interface for drawing Feynman diagrams, Comput. Phys. Commun., 161, 76, (2004)
[56] Binosi, D.; Collins, J.; Kaufhold, C.; Theussl, L., Jaxodraw: A graphical user interface for drawing Feynman diagrams. version 2.0 release notes, Comput. Phys. Commun., 180, 1709, (2009)
[57] Vermaseren, JAM, Axodraw, Comput. Phys. Commun., 83, 45, (1994)
[58] Maitre, D.; Mastrolia, P., S@M, a Mathematica implementation of the spinor-helicity formalism, Comput. Phys. Commun., 179, 501, (2008)
[59] Ellis, RK; Giele, WT; Zanderighi, G., The one-loop amplitude for six-gluon scattering, JHEP, 05, 027, (2006)
[60] J.L. Bourjaily, Efficient Tree-Amplitudes in N = 4: Automatic BCFW Recursion in Mathematica, arXiv:1011.2447 [SPIRES].
[61] Arkani-Hamed, N.; Cachazo, F.; Cheung, C.; Kaplan, J., The S-matrix in twistor space, JHEP, 03, 110, (2010)
[62] J.L. Bourjaily, J. Trnka, A. Volovich and C. Wen, The Grassmannian and the Twistor String: Connecting All Trees in N = 4 SYM, arXiv:1006.1899 [SPIRES].
[63] A. Hodges, Eliminating spurious poles from gauge-theoretic amplitudes, arXiv:0905.1473 [SPIRES].
[64] Mason, L.; Skinner, D., Dual superconformal invariance, momentum twistors and Grassmannians, JHEP, 11, 045, (2009)
[65] Z. Bern, H. Ita and K. Ozeren, private communication.
[66] P. Uwer and B. Biedermann, private communication.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.