×

zbMATH — the first resource for mathematics

John McCarthy’s legacy. (English) Zbl 1216.68017
Summary: This special issue is dedicated to John McCarthy, founding father of Artificial Intelligence. It contains a collection of recent contributions to the field of knowledge representation and reasoning, a field that McCarthy founded and that has been a main focus of his research during the last half century. In this introductory article, we survey some of McCarthy’s major contributions to the field of knowledge representation and reasoning, and situate the papers in this special issue in the context of McCarthy’s previous work.
MSC:
68-03 History of computer science
01A60 History of mathematics in the 20th century
68T27 Logic in artificial intelligence
68T30 Knowledge representation
Software:
CCalc; GOLOG; ConGolog
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Alchourrón, C.E.; Gärdenfors, P.; Makinson, D., On the logic of theory change: partial meet contraction and revision functions, Journal of symbolic logic, 50, 2, 510-530, (1985) · Zbl 0578.03011
[2] Amarel, S., On representation of problems of reasoning about action, (), 131-171 · Zbl 0197.14901
[3] Aristotle, The organon or logical treatises of aristotle, (2007), Kessinger Publishing
[4] Bar-Hillel, Y.; McCarthy, J.; Selfridge, O., Discussion of the paper: programs with common sense, (), 17-20
[5] Baral, C.; Gelfond, M., Logic programming and reasoning about actions, (), 389-428
[6] Bibel, W., A deductive solution for plan generation, New generation computing, 4, 115-132, (1986) · Zbl 0624.68079
[7] Buvac, S., Resolving lexical ambiguity using a formal theory of context, ()
[8] Buvac, S.; Buvac, V.; Mason, I.A., Metamathematics of contexts, Fundamenta informaticae, 23, 2-4, 263-301, (1995) · Zbl 0844.03014
[9] Cabalar, P.; Santos, P.E., Formalising the Fisherman’s folly puzzle, Artificial intelligence, 175, 1, 346-377, (2011), (this issue) · Zbl 1216.68258
[10] Clark, K., Negation as failure, (), 293-322
[11] Copleston, F., Medieval philosophy, (1961), Harper and Collins
[12] Davis, E., Inferring ignorance from the locality of visual perception, (), 786-790
[13] Davis, E., Representations of commonsense knowledge, (1990), Morgan Kaufmann San Francisco
[14] Davis, E., The naive physics perplex, AI magazine, 19, 3, 51-79, (1998)
[15] Davis, E., Knowledge and communication: A first-order theory, Artificial intelligence, 166, 81-139, (2005) · Zbl 1132.68726
[16] Davis, E., How does a box work? A study in the qualitative dynamics of solid objects, Artificial intelligence, 175, 1, 299-345, (2011), (this issue) · Zbl 1216.68259
[17] Davis, E.; Morgenstern, L., A first-order theory of communication and multi-agent plans, Journal of logic and computation, 15, 5, 701-749, (2005) · Zbl 1089.68122
[18] Davis, M., A computer program for Presburger’s algorithm, ()
[19] Davis, M., The mathematics of non-monotonic reasoning, Artificial intelligence, 13, 1-2, 73-80, (1980) · Zbl 0435.68075
[20] Davis, M., The early history of automated deduction, () · Zbl 1011.68511
[21] Davis, M.; Logemann, G.; Loveland, D., A machine program for theorem proving, Communications of the ACM, 5, 7, 394-397, (1962) · Zbl 0217.54002
[22] M. Davis, H. Putnam, Computational methods in the propositional calculus, Renssalaer Polytechnic Institute, Unpublished report, 1958.
[23] Davis, M.; Putnam, H., A computing procedure for quantification theory, Journal of ACM, 7, 3, 201-215, (1960) · Zbl 0212.34203
[24] P. Doherty, Reasoning about action and change using occlusion, in: Proceedings of the Eleventh European Conference on Artificial Intelligence (ECAI-94), 1994, pp. 401-405.
[25] Doherty, P.; Gustafsson, J.; Karlsson, L.; Kvarnström, J., Tal: temporal action logics language specification and tutorial, Electronic transactions on artificial intelligence, 2, 273-306, (1998)
[26] Doherty, P.; Kvarnström, J., Temporal action logics, (), 709-757, (Ch. 18)
[27] Doherty, P.; Kvarnström, J.; Heintz, F., A temporal logic-based planning and execution monitoring framework for unmanned aircraft systems, Autonomous agents and multi-agent systems, 19, 3, 332-377, (2009)
[28] P. Doherty, W. Lukaszewicz, Circumscribing features and fluents, in: Proceedings of the First International Conference on Temporal Logic (ICTL-94), vol. 827, 1994, pp. 82-100. · Zbl 0949.68574
[29] Doherty, P.; Lukaszewicz, W.; Szalas, A., Computing circumscription revisited: A reduction algorithm, Journal of automated reasoning, 18, 3, 297-336, (1997) · Zbl 0939.03033
[30] Faber, W.; Leone, N.; Pfeifer, G., Semantics and complexity of recursive aggregates in answer set programming, Artificial intelligence, 175, 1, 278-298, (2011), (this issue) · Zbl 1216.68263
[31] R. Fagin, J.Y. Halpern, Belief, awareness, and limited reasoning: Preliminary report, in: Proceedings of the Ninth International Joint Conference on Artificial Intelligence (IJCAI-85), 1985, pp. 491-501.
[32] Fagin, R.; Halpern, J.Y.; Moses, Y.; Vardi, M.Y., Reasoning about knowledge, (1995), The MIT Press Cambridge, Massachusetts · Zbl 0839.68095
[33] P. Ferraris, J. Lee, V. Lifschitz, A new perspective on stable models, in: Proceedings of the Twentieth International Joint Conference on Artificial Intelligence (IJCAI-07), 2007, pp. 372-379.
[34] Ferraris, P.; Lee, J.; Lifschitz, V., Stable models and circumscription, Artificial intelligence, 175, 1, 236-263, (2011), (this issue) · Zbl 1227.68103
[35] Fikes, R.; Nilsson, N.J., STRIPS: A new approach to the application of theorem proving to problem solving, Artificial intelligence, 2, 3-4, 189-208, (1971) · Zbl 0234.68036
[36] J.J. Finger, Exploiting constraints in design synthesis, Ph.D. thesis, Stanford University, Stanford, CA, USA, 1987.
[37] Frege, G., Begriffsschrift, (), English title: Concept Script, a formal language of pure thought modelled upon that of arithmetic · JFM 11.0048.02
[38] Gabaldon, A., Nonmarkovian control in the situation calculus, Artificial intelligence, 175, 1, 25-48, (2011), (this issue) · Zbl 1216.68265
[39] H. Gelernter, Realization of a geometry theorem proving machine, in: International Federation for Information Processing Congress (IFIP), 1959, pp. 273-281.
[40] Gelfond, M.; Lifschitz, V., Compiling circumscriptive theories into logic programs, (), 455-459 · Zbl 0675.68047
[41] Gelfond, M.; Lifschitz, V., Classical negation in logic programs and disjunctive databases, New generation computing, 9, 3/4, 365-386, (1991) · Zbl 0735.68012
[42] Gelfond, M.; Lifschitz, V., Representing action and change by logic programs, Journal of logic programming, 17, 2-4, 301-321, (1993) · Zbl 0783.68024
[43] Gelfond, M.; Lifschitz, V., Action languages, Electronic transactions of artificial intelligence, 2, 193-210, (1998)
[44] Ghaderi, H.; Levesque, H.J.; Lespérance, Y., A logical theory of coordination and joint ability, (), 421-426
[45] de Giacomo, G.; Lespérance, Y.; Levesque, H.J., Congolog a concurrent programming language based on the situation calculus, Artificial intelligence, 121, 1-2, 109-169, (2000) · Zbl 0948.68175
[46] Gilmore, P., A proof method for quantification theory: its justification and realization, IBM journal of research and development, 4, 1, (1960) · Zbl 0097.00301
[47] Ginsberg, M.L.; Smith, D.E., Reasoning about action I: A possible worlds approach, Artificial intelligence, 35, 2, 165-195, (1988) · Zbl 0645.68109
[48] Giunchiglia, E.; Lee, J.; Lifschitz, V.; McCain, N.; Turner, H., Nonmonotonic causal theories, Artificial intelligence, 153, 1-2, 49-104, (2004) · Zbl 1085.68161
[49] Gödel, K., The completeness of the axioms of the functional calculus of logic, (), 582-591
[50] Gödel, K., On formally undecidable propositions of principia Mathematica and related systems, (), 596-616 · Zbl 0124.00403
[51] R.V. Guha, Contexts: A formalization and some applications, Ph.D. thesis, Stanford University, 1991.
[52] Gustafsson, J.; Kvarnström, J., Elaboration tolerance through object-orientation, Artificial intelligence, 153, 1-2, 239-285, (2004) · Zbl 1085.68683
[53] Haas, A.R., The case for domain-specific frame axioms, (), 343-348
[54] Halpern, J.Y.; Lakemeyer, G., Multi-agent only knowing, Journal of logic and computation, 11, 1, 41-70, (2001) · Zbl 0984.03016
[55] Halpern, J.Y.; Pucella, R., Dealing with logical omniscience: expressiveness and pragmatics, Artificial intelligence, 175, 1, 220-235, (2011), (this issue) · Zbl 1216.68267
[56] J.Y. Halpern, M.Y. Vardi, Model checking vs. theorem proving: A manifesto, in: Proceedings of the Second International Conference on Principles of Knowledge Representation and Reasoning, 1991, pp. 325-334. · Zbl 0765.68189
[57] S. Hanks, D.V. McDermott, Default reasoning, nonmonotonic logics, and the frame problem, in: Proceedings of the Fifth National Conference on Artificial Intelligence (AAAI-86), 1986, pp. 328-333.
[58] Hayes, P.; Morgenstern, L., On John Mccarthy’s 80th birthday, in honor of his contributions, AI magazine, 28, 4, 95-102, (2007)
[59] Hintikka, J., Knowledge and belief, (1962), Cornell University Press
[60] Hölldobler, S.; Schneeberger, J., A new deductive approach to planning, New generation computing, 8, 3, 225-244, (1990) · Zbl 0711.68026
[61] Hughes, G.E., The modal logic of Jean buridan, (), 93-111
[62] H. Katsuno, A.O. Mendelzon, On the difference between updating a knowledge base and revising it, in: Proceedings of the Second International Conference on Principles of Knowledge Representation and Reasoning (KR-91), 1991, pp. 387-394. · Zbl 0765.68197
[63] H. Katsuno, K. Satoh, A unified view of consequence relation, belief revision and conditional logic, in: Proceedings of the Twelfth International Joint Conference on Artificial Intelligence (IJCAI-91), 1991, pp. 406-412. · Zbl 0747.68080
[64] Kneale, W.; Kneale, M., The development of logic, (1962), Oxford · Zbl 0100.00807
[65] K. Konolige, A deduction model of belief and its logics, Ph.D. thesis, Stanford University, 1984, also published as SRI Technical Report 326. · Zbl 0683.68080
[66] Kowalski, R.A.; Sergot, M.J., A logic-based calculus of events, New generation computing, 4, 1, 67-95, (1986) · Zbl 1356.68221
[67] Kraus, S.; Lehmann, D.J.; Magidor, M., Nonmonotonic reasoning, preferential models and cumulative logics, Artificial intelligence, 44, 1-2, 167-207, (1990) · Zbl 0782.03012
[68] Kraus, S.; Perlis, D.; Horty, J.F., Reasoning about ignorance: A note on the bush-gorbachev problem, Fundamentae informaticae, 15, 3-4, 325-332, (1991) · Zbl 0764.68153
[69] Kripke, S., A completeness theorem in modal logic, Journal of symbolic logic, 24, 1, 1-14, (1959) · Zbl 0091.00902
[70] Kripke, S., A semantical analysis of modal logic I: normal modal propositional calculi, Zeitschrift fur mathematische logic und grundlagen der Mathematik, 9, 67-97, (1963) · Zbl 0118.01305
[71] Kripke, S., Semantical considerations on modal logic, Acta philosophica fennica, 16, 83-94, (1963) · Zbl 0131.00602
[72] Kripke, S., Naming and necessity, (1972), Harvard University Press Cambridge
[73] Kripke, S., Outline of a theory of truth, Journal of philosophy, 19, 690-716, (1975) · Zbl 0952.03513
[74] Kvarnström, J.; Doherty, P., Talplanner: A temporal logic based forward chaining planner, Annals of mathematics and artificial intelligence, 30, 1-4, 119-169, (2000) · Zbl 1002.68158
[75] G. Lakemeyer, All they know: A study in multi-agent nonmonotonic reasoning, in: Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence (IJCAI-93), 1993, pp. 376-381.
[76] Lakemeyer, G.; Levesque, H., A semantic characterization of a useful fragment of the situation calculus with knowledge, Artificial intelligence, 175, 1, 142-164, (2011), (this issue) · Zbl 1216.68269
[77] G. Lakemeyer, H.J. Levesque, AOL: A logic of acting, sensing, knowing, and only knowing, in: Proceedings of the Sixth International Conference on Principles of Knowledge Representation and Reasoning (KR-98), 1998, pp. 316-329.
[78] G.W. Leibniz, Discourse on Metaphysics, 1686, translated by George R. Montgomery, revised by Albert R. Chandler, 1924.
[79] Leibniz, G.W., New essays on human understanding, (1705)
[80] Lenat, D.B., Cyc: A large-scale investment in knowledge infrastructure, Communications of the ACM, 38, 11, 32-38, (1995)
[81] Leone, N.; Pfeifer, G.; Faber, W.; Eiter, T.; Gottlob, G.; Perri, S.; Scarcello, F., The DLV system for knowledge representation and reasoning, ACM transactions on computational logic, 7, 3, 499-562, (2006) · Zbl 1367.68308
[82] H. Levesque, What is planning in the presence of sensing? in: Proceedings of the Thirteenth National Conference on Artificial Intelligence (AAAI-96), AAAI Press, 1996, pp. 1139-1146.
[83] Levesque, H.; Lakemeyer, G., Cognitive robotics, (), 869-886, (Ch. 23)
[84] H.J. Levesque, A logic of implicit and explicit belief, in: Proceedings of the Fourth National Conference on Artificial Intelligence (AAAI-84), 1984, pp. 198-202.
[85] Levesque, H.J., All I know: A study in autoepistemic logic, Artificial intelligence, 42, 2-3, 263-309, (1990) · Zbl 0724.03019
[86] Levesque, H.J.; Reiter, R.; Lespérance, Y.; Lin, F.; Scherl, R.B., Golog: A logic programming language for dynamic domains, Journal of logic programming, 31, 1-3, 59-83, (1997) · Zbl 0880.68008
[87] Lewis, C.I.; Langford, C.H., Symbolic logic, (1932), Dover reprint New York · JFM 58.0056.01
[88] V. Lifschitz, Computing circumscription, in: Proceedings of the Ninth International Joint Conference on Artificial Intelligence (IJCAI-85), 1985, pp. 121-127.
[89] V. Lifschitz, On formalizing contexts, Manuscript, 1986.
[90] Lifschitz, V., Pointwise circumscription: preliminary report, (), 179-193, in: Proceedings of the Fifth National Conference on Artificial Intelligence (AAAI-86), 1986, pp. 406-410, extended version
[91] V. Lifschitz, Between circumscription and autoepistemic logic, in: Proceedings of the First International Conference on Principles of Knowledge Representation and Reasoning (KR-89), 1989, pp. 235-244. · Zbl 0706.03025
[92] ()
[93] Lifschitz, V., Circumscription, (), 297-352
[94] V. Lifschitz, Missionaries and cannibals in the causal calculator, in: Proceedings of the Seventh International Conference on Principles of Knowledge Representation and Reasoning (KR-00), 2000, pp. 85-96.
[95] F. Lin, Embracing causality in specifying the indirect effects of action, in: Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence (IJCAI-95), 1995, pp. 1985-1993.
[96] Lin, F., Situation calculus, (), 649-669, (Ch. 16)
[97] Lin, F.; Reiter, R., State constraints revisited, Journal of logic and computation, 4, 5, 655-678, (1994) · Zbl 0815.68096
[98] Lin, F.; Zhou, Y., From answer set logic programming to circumscription via logic of GK, Artificial intelligence, 175, 1, 264-277, (2011), (this issue) · Zbl 1216.68270
[99] Loveland, D.W., A simplified format for the model elimination theorem-proving procedure, Journal of the ACM, 16, 3, 349-363, (1969) · Zbl 0183.29603
[100] N. McCain, Causality in commonsense reasoning about actions, Ph.D. dissertation, University of Texas at Austin, 1997.
[101] N. McCain, H. Turner, A causal theory of ramifications and qualifications, in: Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence (IJCAI-95), 1995, pp. 1978-1984.
[102] McCarthy, J., Programs with common sense, (), 75-91
[103] McCarthy, J., Situations, actions, and causal laws, (), 410-417, 1963. Tech. rep., Stanford University, reprinted
[104] J. McCarthy, Epistemological problems of artificial intelligence, in: Proceedings of the Fifth International Joint Conference on Artificial Intelligence (IJCAI-77), 1977, pp. 1038-1044.
[105] McCarthy, J., Ascribing mental qualities to machines, (), 161-195
[106] McCarthy, J., First order theories of individual concepts and propositions, (), 129-148
[107] McCarthy, J., Circumscription: A form of non-monotonic reasoning, Artificial intelligence, 13, 1-2, 23-79, (1980) · Zbl 0435.68073
[108] McCarthy, J., Applications of circumscription to common sense reasoning, Artificial intelligence, 28, 1, 89-116, (1986)
[109] McCarthy, J., Generality in artificial intelligence, Communications of the ACM, 30, 12, (1987), revised and expanded version of McCarthy’s 1971 Turing Award lecture. Also printed in Vladimir LIfschitz (Ed.), Formalizing Common Sense · Zbl 0644.68004
[110] J. McCarthy, Notes on formalizing context, in: Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence (IJCAI-93), 1993, pp. 555-562.
[111] McCarthy, J., Making robots conscious of their mental states, Machine intelligence, 15, 3-17, (1995)
[112] McCarthy, J., Modality, si!, modal logic, no!, Studia logica, 59, 1, 29-32, (1997) · Zbl 0884.03016
[113] McCarthy, J., Coloring maps and the kowalski doctrine, (), 167-174, originally written in 1982
[114] McCarthy, J., Elaboration tolerance, (1998), in: Working Papers of the Fourth International Symposium on Logical Formalizations of Commonsense Reasoning, Commonsense-1998. Revised and expanded version available at
[115] McCarthy, J., Elaboration tolerance, (1998), in: Working Papers of the Fourth International Symposium on Logical Formalizations of Commonsense Reasoning, Commonsense-1998, URL
[116] McCarthy, J., Formalization of two puzzles involving knowledge, (), 158-166
[117] McCarthy, J., Mathematical logic in artificial intelligence, (), 237-249, originally published in Daedalus, Winter 1998, pp. 297-311
[118] J. McCarthy, Actions and other events in situation calculus. in: D. Fensel, F. Giunchiglia, D. McGuinness, M. Williams (Eds.), Proceedings of the Eighth International Conference on Principles of Knowledge Representation and Reasoning (KR-02), 2002, pp. 615-628.
[119] J. McCarthy, Notes on self-awareness, in: Working Papers, DARPA Workshop on Self-Awareness, 2004.
[120] McCarthy, J., The well-designed logical child, Artificial intelligence, 172, 18, 2003-2014, (2008) · Zbl 1184.68382
[121] McCarthy, J.; Hayes, P.J., Some philosophical problems from the standpoint of artificial intelligence, (), 463-502 · Zbl 0226.68044
[122] McDermott, D.V., A critique of pure reason, Computational intelligence, 3, 151-160, (1987)
[123] McDermott, D.V.; Doyle, J., Non-monotonic logic I, Artificial intelligence, 13, 1-2, 41-72, (1980) · Zbl 0435.68074
[124] McIlraith, S.A., Integrating actions and state constraints: A closed-form solution to the ramification problem (sometimes), Artificial intelligence, 116, 1-2, 87-121, (2000) · Zbl 0939.68840
[125] S.A. McIlraith, T.C. Son, Adapting Golog for composition of semantic web services, in: Proceedings of the Eighth International Conference on Principles and Knowledge Representation and Reasoning (KR-02), 2002, pp. 482-496.
[126] Miller, R.; Morgenstern, L., The commonsense problem page, (1997)
[127] Miller, R.; Shanahan, M., Narratives in the situation calculus, Journal of logic and computation, 4, 5, 513-530, (1994) · Zbl 0815.68097
[128] Miller, R.; Shanahan, M., Some alternative formulations of the event calculus, (), 452-490 · Zbl 1012.68192
[129] R.C. Moore, Reasoning about knowledge and action, SRI Technical Report 191, 1980.
[130] Moore, R.C., Semantical considerations on nonmonotonic logic, Artificial intelligence, 25, 1, 75-94, (1985) · Zbl 0569.68079
[131] L. Morgenstern, Foundations of a logic of knowledge, action, and communication, Ph.D. thesis, New York University, 1988.
[132] L. Morgenstern, A formal theory of multiple agent nonmonotonic reasoning, in: Proceedings of the Eighth National Conference on Artificial Intelligence (AAAI-90), 1990, pp. 538-544.
[133] Mueller, E.T., Event calculus, (), 671-708, (Ch. 17)
[134] A. Newell, J. Shaw, H. Simon, Empirical explorations of the logic theory machine, in: Proceedings of the Western Joint Computer Congress, 1956, pp. 218-239.
[135] E.P.D. Pednault, ADL: Exploring the middle ground between STRIPS and the situation calculus, in: Proceedings of the First International Conference on Principles of Knowledge Representation and Reasoning (KR-89), 1989, pp. 324-332.
[136] Perlis, D., Autocircumscription, Artificial intelligence, 36, 2, 222-236, (1998) · Zbl 0648.68108
[137] J.A. Pinto, Temporal reasoning in the situation calculus, Ph.D. thesis, University of Toronto, Toronto, Canada, 1994.
[138] Pirri, F., The well-designed logical robot: learning and experience from observations to the situation calculus, Artificial intelligence, 175, 1, 378-415, (2011), (this issue) · Zbl 1216.68271
[139] Pirri, F.; Reiter, R., Some contributions to the metatheory of the situation calculus, Journal of the ACM, 46, 3, 325-361, (1999) · Zbl 1065.68627
[140] Prior, A., Diodoran modalities, Philosophical quarterly, 5, 205-213, (1955)
[141] Prior, A., Time and modality, (1957), Oxford University Press Oxford · Zbl 0079.00606
[142] Prior, A., Past, present, and future, (1967), Clarendon Press Oxford · Zbl 0169.29802
[143] Reiter, R., On closed world data bases, (), 55-76
[144] Reiter, R., A logic for default reasoning, Artificial intelligence, 13, 1-2, 81-132, (1980) · Zbl 0435.68069
[145] Reiter, R., The frame problem in the situation calculus: A simple solution (sometimes) and a completeness result for goal regression, (), 359-380 · Zbl 0755.68124
[146] Reiter, R., Knowledge in action, (2001), MIT Press Cambridge, Massachusetts
[147] Rescher, N., Hypothetical reasoning, (1964), North Holland Amsterdam
[148] Robinson, A., Proving theorems as done by man, machine, and Logician, () · Zbl 0168.26106
[149] Robinson, J.A., Theorem-proving on the computer, Journal of ACM, 10, 2, 163-174, (1963) · Zbl 0109.35603
[150] Robinson, J.A., A machine-oriented logic based on the resolution principle, Journal of ACM, 12, 23-41, (1965) · Zbl 0139.12303
[151] Sandewall, E., Features and fluents: the representation of knowledge about dynamical systems, vol. I, (1994), Oxford University Press Oxford · Zbl 0842.68077
[152] E. Sandewall, Logic based modelling of goal-directed behavior, in: A.G. Cohn, L.K. Schubert, S.C. Shapiro (Eds.), Proceedings of the Sixth International Conference on Principles of Knowledge Representation and Reasoning (KR-98), 1998, pp. 304-315.
[153] Sandewall, E., From systems to logic in the early development of nonmonotonic reasoning, Artificial intelligence, 175, 1, 416-427, (2011), (this issue) · Zbl 1216.68274
[154] R.B. Scherl, H.J. Levesque, The frame problem and knowledge-producing actions, in: Proceedings of the Eleventh National Conference on Artificial Intelligence (AAAI-93), 1993, pp. 689-695.
[155] Scherl, R.B.; Levesque, H.J., Knowledge, action and the frame problem, Artificial intelligence, 144, 1-2, 1-39, (2003) · Zbl 1079.68625
[156] S. Schiffel, M. Thielscher, Fluxplayer: A successful general game player, in: Proceedings of the Twenty-Second Conference on Artificial Intelligence (AAAI-07), 2007, pp. 1191-1196.
[157] Schubert, L.K., Monotonic solution of the frame problem in the situation calculus: an efficient method for worlds with fully specified actions, (), 23-67
[158] Shanahan, M., Solving the frame problem, (1997), MIT Press Cambridge, Massachusetts
[159] Shanahan, M., An abductive event calculus planner, Journal of logic programming, 44, 1-3, 207-240, (2000) · Zbl 0957.68106
[160] Shapiro, S.; Pagnucco, M.; Lespérance, Y.; Levesque, H., Iterated belief change in the situation calculus, Artificial intelligence, 175, 1, 165-192, (2011), (this issue) · Zbl 1216.68275
[161] Shirazi, A.; Amir, E., First-order logical filtering, Artificial intelligence, 175, 1, 193-219, (2011), (this issue) · Zbl 1216.68276
[162] Y. Shoham, Chronological ignorance: Time, nonmonotonicity, necessity and causal theories, in: Proceedings of the Fifth National Conference on Artificial Intelligence (AAAI-86), 1986, pp. 389-393.
[163] Y. Shoham, A semantical approach to nonmonotic logics, in: Proceedings, Symposium on Logic in Computer Science, 1987, pp. 275-279.
[164] Shoham, Y., Varieties of context, (), 393-408 · Zbl 0800.68865
[165] Stalnaker, R., A note on nonmonotonic modal logics, (1980), Department of Philosophy, Cornell University
[166] Tarski, A., Logic, semantics, and metamathematics, (1956), Clarendon Oxford
[167] E. Ternovskaia, ID-logic and the ramification problem for the situation calculus, in: Proceedings of the 14th European Conference on Artificial Intelligence (ECAI), 2000, pp. 563-570.
[168] Thielscher, M., Introduction to the fluent calculus, Electronic transactions on artificial intelligence, 2, 179-192, (1998)
[169] Thielscher, M., From situation calculus to fluent calculus: state update axioms as a solution to the inferential frame problem, Artificial intelligence, 111, 1-2, 277-299, (1999) · Zbl 0996.68193
[170] Thielscher, M., Flux: A logic programming method for reasoning agents, Theory and practice of logic programming (TPLP), 5, 4-5, 533-565, (2005) · Zbl 1105.68333
[171] M. Thielscher, How (not) to minimize events, in: A.G. Cohn, L.K. Schubert, S.C. Shapiro (Eds.), Proceedings of the International Conference on Principles of Knowledge Representation and Reasoning (KR-1998), 1998, pp. 60-73.
[172] Thielscher, M., A unifying action calculus, Artificial intelligence, 175, 1, 120-141, (2011), (this issue) · Zbl 1216.68277
[173] Tu, P.H.; Son, T.C.; Gelfond, M.; Morales, A.R., Approximation of action theories and its application to conformant planning, Artificial intelligence, 175, 1, 79-119, (2011), (this issue) · Zbl 1230.68185
[174] Turner, H., Nonmonotonic causal logic, (), 759-776, (Ch. 19)
[175] van Benthem, J., McCarthy variations in a modal key, Artificial intelligence, 175, 1, 428-439, (2011), (this issue) · Zbl 1216.68278
[176] von Wright, G.H., Deontic logic, Mind, 60, 1-15, (1951)
[177] von Wright, G.H., An essay in deontic logic and the general theory of action, (1968), North Holland Amsterdam · Zbl 0172.29203
[178] Wang, H., Toward mechanical mathematics, IBM journal of research and development, 4, 1, 2-22, (1960) · Zbl 0097.00404
[179] Whitehead, A.N.; Russell, B., Principia Mathematica, (1957), University Press, originally published 1910-1913 · JFM 61.0061.03
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.