×

On the resolution-based family of abstract argumentation semantics and its grounded instance. (English) Zbl 1216.68255

Summary: This paper introduces a novel parametric family of semantics for abstract argumentation called resolution-based and analyzes in particular the resolution-based version of the traditional grounded semantics, showing that it features the unique property of satisfying a set of general desirable properties recently introduced in the literature. Additionally, an investigation of its computational complexity properties reveals that resolution-based grounded semantics is satisfactory also from this perspective.

MSC:

68T27 Logic in artificial intelligence

Software:

AFRA
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Abramsky, S.; Jung, A., Domain theory, (), 1-168
[2] Amgoud, L.; Cayrol, C., A reasoning model based on the production of acceptable arguments, Annals of mathematics and artificial intelligence, 34, 197-215, (2002) · Zbl 1002.68172
[3] Baroni, P.; Cerutti, F.; Giacomin, M.; Guida, G., Encompassing attacks to attacks in abstract argumentation frameworks, (), 83-94 · Zbl 1203.68198
[4] Baroni, P.; Cerutti, F.; Giacomin, M.; Guida, G., AFRA: argumentation framework with recursive attacks, International journal of approximate reasoning, 51, 1, 19-37, (2011) · Zbl 1211.68433
[5] Baroni, P.; Giacomin, M., Evaluating argumentation semantics with respect to skepticism adequacy, (), 329-340 · Zbl 1122.68635
[6] Baroni, P.; Giacomin, M., On principle-based evaluation of extension-based argumentation semantics, Artificial intelligence, 171, 10/15, 675-700, (2007) · Zbl 1168.68559
[7] Baroni, P.; Giacomin, M., Semantics of abstract argument systems, (), 25-44
[8] Baroni, P.; Giacomin, M., Skepticism relations for comparing argumentation semantics, International journal of approximate reasoning, 50, 6, 854-866, (2009) · Zbl 1191.68671
[9] P. Baroni, M. Giacomin, G. Guida, Towards a formalization of skepticism in extension-based argumentation semantics, in: Proceedings of the 4th Workshop on Computational Models of Natural Argument (CMNA 2004), Valencia, Spain, 2004, pp. 47-52.
[10] Baroni, Pietro; Giacomin, Massimiliano; Guida, Giovanni, SCC-recursiveness: a general schema for argumentation semantics, Artificial intelligence, 168, 1-2, 165-210, (2005) · Zbl 1132.68765
[11] Bench-Capon, T.J.M., Persuasion in practical argument using value-based argumentation frameworks, Journal of logic and computation, 13, 3, 429-448, (2003) · Zbl 1043.03026
[12] Bench-Capon, T.J.M.; Doutre, S.; Dunne, P.E., Audiences in argumentation frameworks, Artificial intelligence, 171, 42-71, (2007) · Zbl 1168.68561
[13] Caminada, M., Semi-stable semantics, (), 121-130
[14] Caminada, M.; Amgoud, L., On the evaluation of argumentation formalisms, Artificial intelligence, 171, 5-6, 286-310, (2007) · Zbl 1168.68562
[15] Coste-Marquis, S.; Devred, C.; Marquis, P., Prudent semantics for argumentation frameworks, (), 568-572
[16] Coste-Marquis, S.; Devred, C.; Marquis, P., Symmetric argumentation frameworks, (), 317-328 · Zbl 1122.68642
[17] Dimopoulos, Y.; Torres, A., Graph theoretical structures in logic programs and default theories, Theoretical computer science, 170, 1-2, 209-244, (1996) · Zbl 0874.68190
[18] Dung, P.M., On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming, and n-person games, Artificial intelligence, 77, 2, 321-357, (1995) · Zbl 1013.68556
[19] Dung, P.M.; Mancarella, P.; Toni, F., A dialectic procedure for sceptical, assumption-based argumentation, (), 145-156
[20] Dunne, P.E., Computational properties of argument systems satisfying graph-theoretic constraints, Artificial intelligence, 171, 10/15, 701-729, (2007) · Zbl 1168.68565
[21] Dunne, P.E., The computational complexity of ideal semantics, Artificial intelligence, 174, 20-50, (2009)
[22] Dunne, P.E.; Bench-Capon, T.J.M., Coherence in finite argument systems, Artificial intelligence, 141, 1, 187-203, (2002) · Zbl 1043.68098
[23] Dunne, P.E.; Bench-Capon, T.J.M., Complexity in value-based argument systems, (), 360-371 · Zbl 1111.68673
[24] Dunne, P.E.; Caminada, M., Computational complexity of semi-stable semantics in abstract argumentation frameworks, (), 153-165 · Zbl 1178.68557
[25] Dunne, P.E.; Hunter, A.; McBurney, P.; Parsons, S.; Wooldridge, M., Weighted argument systems: basic definitions, algorithms, and complexity results, Artificial intelligence, 175, 2, 457-486, (2010) · Zbl 1216.68261
[26] Dunne, P.E.; Wooldridge, M., Complexity of abstract argumentation, (), 85-104
[27] Inoue, K.; Sakama, C., Generality and equivalence relations in default logic, (), 434-439
[28] Modgil, S., Hierarchical argumentation, (), 319-332 · Zbl 1152.68611
[29] Modgil, S., Reasoning about preferences in argumentation frameworks, Artificial intelligence, 173, 9-10, 901-934, (2009) · Zbl 1192.68663
[30] Plotkin, G.D., A powerdomain construction, SIAM journal on computing, 5, 3, 452-487, (1976) · Zbl 0355.68015
[31] Prakken, H., An abstract framework for argumentation with structured arguments, Argument and computation, 1, 2, 93-124, (2010)
[32] B. Verheij, Two approaches to dialectical argumentation: admissible sets and argumentation stages, in: Proceedings of the Eighth Dutch Conference on Artificial Intelligence (NAIC’96), Utrecht, NL, 1996, pp. 357-368.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.