×

zbMATH — the first resource for mathematics

Longest cycles in 3-connected cubic graphs. (English) Zbl 0591.05040
See the preview in Zbl 0568.05034.

MSC:
05C38 Paths and cycles
05C35 Extremal problems in graph theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Barnette, D, Trees in polyhedral graphs, Canad. J. math., 18, 731-736, (1966) · Zbl 0141.21401
[2] {\scJ. A. Bondy}, personal communication.
[3] Bondy, J.A; entringer, R.C, Longest cycles in 2-connected graphs with prescribed maximum degree, Canad. J. math., 32, 1325-1332, (1980) · Zbl 0409.05037
[4] Bondy, J.A; Murty, U.S.R, ()
[5] Bondy, J.A; Simonovits, M, Longest cycles in 3-connected cubic graphs, Canad. J. math., 32, No. 4, 987-992, (1980) · Zbl 0454.05043
[6] {\scH. Fleischner}, personal communication.
[7] Grünbaum, B; Motzkin, T.S, Longest simple paths in polyhedral graphs, J. London math. soc., 37, 2, 152-160, (1962) · Zbl 0106.16802
[8] Grünbaum, B; Walther, H, Shortness exponents of families of graphs, J. combin. theory ser. A, 14, 364-385, (1973) · Zbl 0263.05103
[9] Jackson, B; Parsons, T.D, A shortness exponent for r-regular, r-conncected graphs, J. graph theory, 6, 169-176, (1982) · Zbl 0493.05038
[10] Lang, R; Walther, H, Über Längste kreise in regulären graphen, (), 91-98 · Zbl 0175.20801
[11] Tait, P.G, Remarks on colouring of maps, (), 729 · JFM 12.0409.02
[12] Tutte, W.T, On Hamiltonian circuits, J. London math. soc., 21, 98-101, (1946) · Zbl 0061.41306
[13] Tutte, W.T, A theorem on planar graphs, Trans. amer. math. soc., 82, 99-116, (1956) · Zbl 0070.18403
[14] Walther, H, Über die anzahl der knotenpunkte eines längsten kreises in planaren, kubischen dreifach knotenzusammenhangenden graphen, Studia sci. math. hungar., 2, 391-398, (1967) · Zbl 0171.22404
[15] Walther, H, Über extremalkreise in regulären landkarten, Wiss. Z. techn. hochsch. ilmenau, 15, 139-142, (1969) · Zbl 0202.23402
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.