×

zbMATH — the first resource for mathematics

The trace inequality and eigenvalue estimates for Schrödinger operators. (English) Zbl 0591.47037
Suppose \(\Phi\) is a nonnegative, locally integrable, radial function on \(R^ n\), which is nonincreasing in \(| x|\). Set \[ (Tf)(x)=\int_{R^ n}\Phi (x-y)f(y)dy \] when \(f\geq 0\) and \(x\in R^ n\). Given \(1<p<\infty\) and \(v\geq 0\), we show there exists \(C>0\) so that \[ \int_{R^ n}(Tf)(x)^ pv(x)dx\leq C\int_{R^ n}f(x)^ pdx \] for all \(f\geq 0\). If and only if \(C'>0\) exists with \[ \int_{Q}T(x_ Qv)(x)^{p'}dx\leq C'\int_{Q}v(x)dx<\infty \] for all dyadic cubes Q, where \(p'=p/(p-1)\). This result is used to refine recent estimates of C. L. Fefferman and D. H. Phong on the distribution of eigenvalues of Schrödinger operators.

MSC:
47F05 General theory of partial differential operators
47A10 Spectrum, resolvent
26D10 Inequalities involving derivatives and differential and integral operators
35J10 Schrödinger operator, Schrödinger equation
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] D. R. ADAMS, A trace inequality for generalized potentials, Studia Math., 48 (1973), 99-105. · Zbl 0237.46037
[2] D. R. ADAMS, On the existence of capacitary strong type estimates in rn, Ark. Mat., 14 (1976), 125-140. · Zbl 0325.31008
[3] D. R. ADAMS, Lectures on lp-potential theory (preprint), Univ. of Umeä, 2 (1981).
[4] N. ARONSZAJN and K. T. SMITH, Theory of Bessel potentials I, Ann. Inst. Fourier, 11 (1961), 385-475. · Zbl 0102.32401
[5] S. Y. A. CHANG, J. M. WILSON and T. H. WOLFF, Some weighted norm inequalities concerning the Schrödinger operators, Comment. Math. Helv., 60 (1985), 217-246. · Zbl 0575.42025
[6] S. CHANILLO and R. L. WHEEDEN, Lp estimates for fractional integrals and Sobolev inequalities, with applications to Schrödinger operators, Comm. Partial Differential Equations, 10 (1985), 1077-1116. · Zbl 0578.46024
[7] R. COIFMAN and C. FEFFERMAN, Weighted norm inequalities for maximal functions and singular integrals, Studia Math., 51 (1974), 241-250. · Zbl 0291.44007
[8] B. DAHLBERG, Regularity properties of Riesz potentials, Ind. U. Math. J., 28 (1979), 257-268. · Zbl 0413.31003
[9] E. FABES, C. KENIG and R. SERAPIONI, The local regularity of solutions of degenerate elliptic equations, Comm. in P.D.E., 7 (1982), 77-116. · Zbl 0498.35042
[10] C. L. FEFFERMAN, The uncertainty principle, Bull. A.M.S., (1983), 129-206. · Zbl 0526.35080
[11] M. De GUZMAN, Differentiation of integrals in rn, Lecture Notes in Math., vol. 481, Springer-Verlag, Berlin and New York, 1975. · Zbl 0327.26010
[12] K. HANSSON, Continuity and compactness of certain convolution operators, Institut Mittage-Leffler, Report No. 9, (1982).
[13] R. KERMAN and E. SAWYER, Weighted norm inequalities for potentials with applications to Schrödinger operators, Fourier transforms and Carleson measures, announcement in Bull. A.M.S., 12 (1985), 112-116. · Zbl 0564.35027
[14] V. G. MAZ’YA, On capacitary estimates of the strong type for the fractional norm, Zap. Sen. LOMI Leningrad, 70 (1977), 161 - 168. · Zbl 0433.46032
[15] B. MUCKENHOUPT and R. L. WHEEDEN, Weighted norm inequalities for fractional integrals, Trans. A.M.S., 192 (1974), 251-275. · Zbl 0289.26010
[16] M. REED and B. SIMON, Methods of mathematical physics, Vol. I, Academic Press, New York and London, 1972. · Zbl 0242.46001
[17] E. SAWYER, Weighted norm inequalities for fractional maximal operators, C.M.S. Conf. Proc., 1 (1980), 283-309. · Zbl 0546.42018
[18] E. SAWYER, A characterization of a two-weight norm inequality for maximal operators, Studia Math., 75 (1982), 1-11. · Zbl 0508.42023
[19] E. M. STEIN, The characterization of functions arising as potentials I, Bull. Amer. Math. Soc., 67 (1961), 102-104, II (IBID), 68 (1962), 577-582. · Zbl 0127.32002
[20] E. M. STEIN, Singular integrals and differentiability properties of functions, 2nd edition, Princeton University Press, 1970. · Zbl 0207.13501
[21] J.-O. STRÖMBERG and R. L. WHEEDEN, Fractional integrals on weighted hp and lp spaces, Trans. Amer. Math., Soc., 287 (1985), 293-321. · Zbl 0524.42011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.