zbMATH — the first resource for mathematics

A mixed-Lagrange multiplier finite element method for the polyharmonic equation. (English) Zbl 0591.65073
The mixed method technique is applied for the approximation of the first boundary value problem for the polyharmonic equation. The problem is reformulated as a lower order system of equations so that a conforming finite element method can be used with only continuous finite elements. The linear system of equations resulting from the Galerkin method applied to the reformulated problem is easily preconditioned and efficiently solved by the conjugate gradient method.
Appropriate Lagrange multipliers are introduced so that the iteration scheme produced involves only a sequence of second order boundary problems with natural boundary conditions.
Reviewer: N.F.F.Ebecken

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
31A30 Biharmonic, polyharmonic functions and equations, Poisson’s equation in two dimensions
35J40 Boundary value problems for higher-order elliptic equations
Full Text: DOI EuDML
[1] O. AXELSSON, Solution of linear Systems of équations : itérative methods. Sparse Matrix Techniques, V. A. Barker (editor), Lecture Notes in Mathematics 572, Springer Verlag, 1977. Zbl0354.65021 MR448834 · Zbl 0354.65021
[2] I. BABUSKA, The finite element method with Lagrangian multipliers, Numer. Math., 20 (1973), pp. 179-192. Zbl0258.65108 MR359352 · Zbl 0258.65108 · doi:10.1007/BF01436561 · eudml:132183
[3] I. BABUSKA and A. K. AZIZ, Survey lectures on the mathematical foundations of the finite element method, The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, A. K. Aziz (editor), Academic Press, New York, 1972. Zbl0268.65052 MR421106 · Zbl 0268.65052
[4] J. H. BRAMBLE, The Lagrange multiplier method for Dirichlet’s Problem, Math.Comp., 37 (1981), pp. 1-11 Zbl0477.65077 MR616356 · Zbl 0477.65077 · doi:10.2307/2007496
[5] J. H. BRAMBLE and R. S. FALK, TWO mixed finite element methods for the simply supported plate problem, R.A.I.R.O., Analyse numérique, 17 (1983), pp. 337-384. Zbl0536.73063 MR713765 · Zbl 0536.73063 · eudml:193421
[6] J . H . BRAMBLE and J. E. OSBORN, Rate of convergence estimates for non-selfadjoint eigenvalue approximations. Math. Comp.. 27 (1973). pp. 525-549 Zbl0305.65064 MR366029 · Zbl 0305.65064 · doi:10.2307/2005658
[7] J. H. BRAMBLE and J. E. PASCIAK, A new computational approach for the linearized scalar potential formulation of the magnetostatic field problem, EEE Transactions on Magnetics, Vol Mag-18, (1982), pp. 357-361.
[8] J. H. BRAMBLE and L. R. SCOTT, Simultaneous approximation in scales of Banach spaces, Math. Comp., 32 (1978), pp.947-954. Zbl0404.41005 MR501990 · Zbl 0404.41005 · doi:10.2307/2006327
[9] P. G. CIARLET and P.A. RAVIART, A mixed finite element method for the biharmonic equation, Symposium on Mathematical Aspects of Finite Elements in Partial Differential Equations, C. DeBoor, Ed., Academic Press, New York, 1974, pp. 125-143. Zbl0337.65058 MR657977 · Zbl 0337.65058
[10] P. G. CIARLET and R. GLOWINSKI, Dual itérative techniques for solving a finite element approximation of the biharmonic equation, Comput. Methods Appl. Mech. Engrg., 5 (1975), pp.277-295. Zbl0305.65068 MR373321 · Zbl 0305.65068 · doi:10.1016/0045-7825(75)90002-X
[11] R. S., FALK, Approximation of the biharmonic equation by a mixed finite element method, SIAM J. Numer. Anal., 15 (1978), pp.556-567. Zbl0383.65059 MR478665 · Zbl 0383.65059 · doi:10.1137/0715036
[12] R. GLOWINSKI and O. PIRONNEAU, Numerical methods for the first biharmonic equation and for the two-dimensional Stokes problem, SIAM Review, 21 (1979), pp. 167-212. Zbl0427.65073 MR524511 · Zbl 0427.65073 · doi:10.1137/1021028
[13] J. L. LIONS and E. MAGENES, Problèmes Aux Limites non Homogènes et Applications, Vol 1, Dunod, Paris, 1968. Zbl0165.10801 MR247243 · Zbl 0165.10801
[14] M. SCHECHTER, On \(L^p\) estimates andregularity II, Math. Scand., 13 (1963), pp. 47- Zbl0131.09505 MR188616 · Zbl 0131.09505 · eudml:165850
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.