Krasny, Robert Desingularization of periodic vortex sheet roll-up. (English) Zbl 0591.76059 J. Comput. Phys. 65, 292-313 (1986). Summary: The equations governing periodic vortex sheet roll-up from analytic initial data are desingularized. Linear stability analysis shows that this diminishes the vortex sheet model’s short wavelength instability, yielding a numerically more tractable set of equations. Computational evidence is presented which indicates that this approximation converges, beyond the critical time of singularity formation in the vortex sheet, if the mesh is refined and the smoothing parameter is reduced in the proper order. The results suggest that the vortex sheet rolls up into a double branched spiral past the critical time. It is demonstrated that either higher machine precision or a spectral filter can be used to maintain computational accuracy as the smoothing parameter is decreased. Some conjectures on the model’s long time asymptotic state are given. Cited in 5 ReviewsCited in 141 Documents MSC: 76E05 Parallel shear flows in hydrodynamic stability 76B47 Vortex flows for incompressible inviscid fluids 76M99 Basic methods in fluid mechanics Keywords:periodic vortex sheet roll-up; analytic initial data; Linear stability analysis; vortex sheet model’s short wavelength instability; critical time of singularity formation; smoothing parameter; double branched spiral; precision; spectral filter; accuracy; long time asymptotic state × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Anderson, C., J. Comput. Phys., 61, 417 (1985) · Zbl 0576.76023 [2] Anderson, C.; Greengard, C., SIAM J. Numer. Anal., 22, 413 (1985) · Zbl 0578.65121 [3] Aref, H., Annu. Rev. Fluid Mech., 15 (1983) [4] Batchelor, G. K., An Introduction to Fluid Mechanics (1967), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0152.44402 [5] Beale, J. T.; Majda, A., J. Comput. Phys., 58, 188 (1985) · Zbl 0588.76037 [6] Bellman, R.; Pennington, R. H., Quart. Appl. Math., 12, 151 (1954) · Zbl 0057.41503 [7] Birkhoff, G.; Fisher, J., Rend. Circ. Mat. Palermo Ser. 2, 8, 77 (1959) · Zbl 0091.17602 [8] Birkhoff, G., Helmholtz and Taylor Instability, (Proceedings of the Symposium on Applied Mathematics, Vol. XIII (1962), Amer. Math. Soc: Amer. Math. Soc Providence, RI) · Zbl 0107.42702 [9] Chorin, A. J.; Bernard, P. S., J. Comput. Phys., 13, 423 (1973) · Zbl 0273.76022 [10] Corcos, G. M.; Sherman, F. S., J. Fluid Mech., 139, 29 (1984) · Zbl 0546.76076 [11] Garabedian, P. R., Partial Differential Equations (1964), Wiley: Wiley New York · Zbl 0124.30501 [12] Hald, O. H., SIAM J. Numer. Anal., 16, 726 (1979) · Zbl 0427.76024 [13] Higdon, J. J.L.; Pozrikidis, C., J. Fluid Mech., 150, 203 (1985) · Zbl 0554.76023 [14] Ho, C.-H.; Huerre, P., Annu. Rev. Fluid Mech., 16 (1984) [15] Krasny, R., J. Fluid Mech., 167, 65 (1986) · Zbl 0601.76038 [16] Leonard, A., J. Comput. Phys., 37, 289 (1980) · Zbl 0438.76009 [17] Meiron, D. I.; Baker, G. R.; Orszag, S. A., J. Fluid Mech., 114, 283 (1982) · Zbl 0476.76031 [18] Moore, D. W., Stud. Appl. Math., 58, 119 (1978) · Zbl 0384.76022 [19] Moore, D. W., (Proc. R. Soc. London Ser. A, 365 (1979)), 105 · Zbl 0404.76040 [20] Moore, D. W., SIAM J. Sci. Stat. Comput., 2, 65 (1981) · Zbl 0469.76032 [21] Pozrikidis, C.; Higdon, J. J.L., J. Fluid Mech., 157, 225 (1985) [22] Pullin, D. I.; Phillips, W. R.C., J. Fluid Mech., 104, 45 (1981) · Zbl 0494.76025 [23] Pullin, D. I., J. Fluid Mech., 119, 507 (1982) · Zbl 0507.76036 [24] Richtmeyer, R. D.; Morton, K. W., Difference Methods for Initial-Value Problems (1967), Interscience: Interscience New York · Zbl 0155.47502 [25] Rosenhead, L., (Proc. R. Soc. London Ser. A, 134 (1931)), 170 · Zbl 0003.08401 [26] Saffman, P. G.; Baker, G. R., Annu. Rev. Fluid Mech., 11 (1979) [27] Sethian, J., Commun. Math. Phys., 101, 4 (1985) · Zbl 0619.76087 [28] Sulem, C.; Sulem, P. L.; Bardos, C.; Frisch, U., Commun. Math. Phys., 80, 485 (1981) · Zbl 0476.76032 [29] Thompson, C. J., Mathematical Statistical Mechanics (1979), Princeton Univ. Press: Princeton Univ. Press Princeton, NJ · Zbl 0417.60096 [30] van de Vooren, A. I., (Proc. R. Soc. London Ser. A, 373 (1980)), 67 [31] Van Dyke, M., An Album of Fluid Motion (1982), Parabolic Press: Parabolic Press Stanford, CA [32] Zabusky, N. J.; Overman, E. A., J. Comput. Phys., 52, 351 (1983) · Zbl 0572.76004 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.