On maximal subalgebras of central simple Malcev algebras. (English) Zbl 0592.17014

Let A be a central simple non-Lie Malcev algebra over a field F of characteristic not 2. It is recalled that A is forced to be finite dimensional, \(\dim (A)=7\) and particular kinds of multiplication tables for A exist. The author determines the maximal subalgebras M of A. There are exactly two types, depending on what type of Cartan subalgebra C of A exists in M. If C is split, then \(\dim (M)=5\) and M is isomorphic to \(V+S\) where \(VS=V\), \(VV=0\), \(S\cong sl(2,F)\) and V is a certain type of S-module. If no C in M is split, then \(\dim (M)=3\) and M is a non-split simple Lie algebra.
Reviewer: E.L.Stitzinger


17D10 Mal’tsev rings and algebras
17A30 Nonassociative algebras satisfying other identities
Full Text: DOI


[1] Albert, A. A., Structure of Algebras, (Amer. Math. Soc. Coll. Publ., Vol. 24 (1939), Amer. Math. Soc.,: Amer. Math. Soc., New York) · Zbl 0029.01003
[2] Carlsson, R., Malcev-Moduln, J. Reine Angew. Math., 281, 199-210 (1976) · Zbl 0326.17010
[3] Dynkin, E., Semisimple subalgebras of semisimple Lie algebras, Amer. Math. Soc. Trans., 6, 111-244 (1957) · Zbl 0077.03404
[4] Dynkin, E., Maximal subgroups of the classical groups, Amer. Math. Soc. Trans., 6, 245-378 (1957) · Zbl 0077.03403
[5] El Malek, A. A., On the Frattini subalgebra of a Malcev algebra, Arch. Math., 37, 306-315 (1981) · Zbl 0453.17010
[6] El Malek, A. A., The conjugacy of the Cartan subalgebras of a soluble Malcev algebra, J. Algebra, 85, 323-332 (1983) · Zbl 0523.17008
[7] El Malek, A. A., Cartan subalgebras of a Malcev algebra and its ideals, Comm. Algebra, 11, 20, 2333-2347 (1983) · Zbl 0523.17007
[8] Filippov, V. T., Semiprimary Malcev algebras of Characteristic three, Algebra i Logika, 14, 1, 100-111 (1975)
[9] Filippov, V. T., Central simple Malcev algebras, Algebra i Logika, 15, 235-242 (1976)
[10] Jacobson, N., Lie algebras (1962), Interscience: Interscience New York · JFM 61.1044.02
[11] Kuzmin, E. N., Malcev algebras and their representations, Algebra i Logika, 7, 4, 48-69 (1968) · Zbl 0204.36104
[12] Racine, M. L., On maximal subalgebras, J. Algebra, 30, 155-180 (1974) · Zbl 0282.17009
[13] Sagle, A. A., Malcev algebras, Trans. Amer. Soc., 101, 426-458 (1961) · Zbl 0101.02302
[14] Schafer, R. D., An Introduction to Nonassociative Algebras (1966), Academic Press: Academic Press New York · Zbl 0145.25601
[15] Seligman, G. B., Modular Lie algebras, (Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 40 (1967), Springer-Verlag: Springer-Verlag New York) · Zbl 0189.03201
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.