Stech, Harlan W. Hopf bifurcation calculations for functional differential equations. (English) Zbl 0592.34048 J. Math. Anal. Appl. 109, 472-491 (1985). The author presents an alternate method for analyzing the Hopf bifurcation problem in a class of functional differential equations with unbounded delay: \(\dot y(t)=\int^{0}_{\infty}d\eta (\alpha;s)y_ t(s)+H(\alpha;y_ t).\) An advantage of this method over previous ones for example by S.-N. Chow and J. Mallet-Paret [J. Differ. Equations 26, 112-159 (1977; Zbl 0367.34033)] is that it avoids all reference to the infinite-dimensional nature of the problem. Its importance lies both in its generality and its relative ease of applications. The method is based on Lyapunov-Schmidt means and is motivated by the work of J. C. De Oliveira and J. K. Hale [Tôhoku Math. J., II. Ser. 32, 577-592 (1980; Zbl 0454.34035)]. Reviewer: Jing Huang Tian Cited in 23 Documents MSC: 34K99 Functional-differential equations (including equations with delayed, advanced or state-dependent argument) 34C25 Periodic solutions to ordinary differential equations Keywords:Hopf bifurcation problem; functional differential equations; unbounded delay; Lyapunov-Schmidt means Citations:Zbl 0367.34033; Zbl 0454.34035 × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Andronov, A. A.; Leontovich, E. A.; Gordon, I. I.; Maier, A. E., Theory of Bifurcations of Dynamical Systems on a Plane (1971), Israel Program for Scientific Translations: Israel Program for Scientific Translations Jerusalem [2] Chafee, N., A bifurcation problem for a functional differential equation of finitely retarded type, J. Math. Anal. Appl., 35, 312-348 (1971) · Zbl 0214.09806 [3] Chow, S.-N; Hale, J. K., Methods of Bifurcation Theory (1982), Springer-Verlag: Springer-Verlag New York · Zbl 0487.47039 [4] Chow, S.-N; Mallet-Paret, J., Integral averaging and Hopf bifurcation, J. Differential Equations, 26, 112-159 (1977) · Zbl 0367.34033 [5] Claeyssen, J. R., The integral-averaging bifurcation method and the general one-delay equation, J. Math. Anal. Appl., 78, 429-439 (1980) · Zbl 0447.34042 [6] de Oliveira, J. C.F, Hopf bifurcation for functional differential equations, Nonlinear Anal. T. M. A., 4, 217-229 (1980) · Zbl 0456.34044 [7] de Oliveira, J. C.F; Hale, J. K., Dynamic behavior from bifurcation equations, Tôhoku Math. J., 32, 577-592 (1980) · Zbl 0454.34035 [8] Flockerzi, D., Existence of small periodic solutions of ordinary differential equations in \(R^2\), Arch. Math., 33, 263-278 (1979) · Zbl 0407.34037 [9] Golobitsky, M.; Langford, W. F., Classification and unfoldings of degenerate Hopf bifurcations, J. Differential Equations, 41, 375-415 (1981) · Zbl 0442.58020 [10] Green, D., Self-oscillations for epidemic models, Math. Biosci., 38, 91-111 (1978) · Zbl 0384.92013 [11] Hale, J. K., Functional Differential Equations, (Applied Math. Sci., Vol. 3 (1971), Springer-Verlag: Springer-Verlag New York) · Zbl 0267.34064 [12] Hale, J. K., Stability from the bifurcation function, (Differential Equations (1980), Academic Press: Academic Press New York), 23-30 · Zbl 0588.34043 [13] Hale, J. K.; de Oliveira, J. C.F, Hopf bifurcation for functional equations, J. Math. Anal. Appl., 74, 41-59 (1980) · Zbl 0433.34053 [14] Hassard, B. D.; Kazarinoff, N. D.; Wan, Y.-H, Theory and Applications of Hopf Bifurcation, (London Math. Soc. Lecture Notes, No. 41 (1981), Cambridge Univ. Press: Cambridge Univ. Press Cambridge) · Zbl 0474.34002 [15] Hethcote, H. W.; Stech, H. W.; van den Driessche, P., Nonlinear oscillations in epidemic models, SIAM J. Appl. Math., 1, 1-9 (1981) · Zbl 0469.92012 [16] Jordan, G. S.; Wheeler, R. L., Asymptotic behavior of unbounded solutions of linear Volterra integral equations, J. Math. Anal. Appl., 3, 596-615 (1976) · Zbl 0347.45022 [17] Kaplan, J.; Yorke, J., On the stability of a periodic solution of a delay differential equation, SIAM J. Math. Anal., 6, 268-282 (1975) · Zbl 0241.34080 [18] Kazarinoff, N. D.; van den Driessche, P.; Wan, Y.-H, Hopf bifurcation and stability of periodic solutions of differential-difference and integro-differential equations, J. Inst. Math. Appl., 21, 461-477 (1978) · Zbl 0379.45021 [19] Kielhöfer, H., Generalized Hopf bifurcation in Hilbert space, Math. Meth. Appl. Sci., 1, 498-513 (1979) · Zbl 0451.34059 [20] Levinger, B. W., A folk theorem in functional differential equations, J. Differential Equations, 4, 612-619 (1968) · Zbl 0174.13902 [21] Marsden, J. E.; McCracken, M., The Hopf Bifurcation and Its Applications, (Applied Math. Sciences, Vol. 19 (1976), Springer-Verlag: Springer-Verlag New York) · Zbl 0545.58002 [22] Naito, T., On autonomous linear functional differential equations with infinite retardations, J. Differential Equations, 21, 135-143 (1976) · Zbl 0342.34054 [23] Negrini, P.; Tesei, A., Attractivity and Hopf bifurcation in Banach spaces, J. Math. Anal. Appl., 78, 204-221 (1980) · Zbl 0452.35050 [24] Nussbaum, R. D., The range of periods of periodic solutions of \(x\)′ \((t)\) = −\( αf (x(t\) − 1)), J. Math. Anal. Appl., 58, 280-292 (1977) · Zbl 0359.34066 [25] H. W. Stechin; H. W. Stechin [26] Stech, H. W., The Hopf bifurcation: a stability result and application, J. Math. Anal. Appl., 2, 525-546 (1979) · Zbl 0418.34073 [27] H. W. StechSIAM J. Math. Anal.; H. W. StechSIAM J. Math. Anal. · Zbl 0586.34060 [28] Stech, H. W., On the adjoint theory for autonomous linear functional differential equations with unbounded delays, J. Differential Equations, 27, 421-443 (1978) · Zbl 0417.34100 [29] H. W. Stech; H. W. Stech · Zbl 0418.34073 [30] Stech, H. W.; Williams, M., Stability in a class of cyclic epidemic models with delay, J. Math. Biol., 11, 95-103 (1981) · Zbl 0449.92022 [31] S. A. Van Gils; S. A. Van Gils This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.