×

zbMATH — the first resource for mathematics

Toeplitz matrices and determinants with Fisher-Hartwig symbols. (English) Zbl 0592.47016
The authors obtain an extension of the classical Szegö limit theorem for the asymptotic behavior of Toeplitz determinants \(D_ n(a)=\det (a_{j-k})^{\infty}_{j,k=0}\) as \(n\to \infty\). In particular, they consider ”singular” symbols of the form \(a(t)=\prod^{R}_{r=1}| t- t_ r|^{2\alpha_ r}(-t)_{t_ r}^{\beta_ r}b(t)\) where \(t_ 1,...,t_ R\) are distinct points on the unit circle \({\mathbb{T}}\), the function b(t) is non-zero and sufficiently smooth on \({\mathbb{T}}\) with ind(b)\(\neq 0\), \(| Re \alpha_ r| <1/2\), \(| Re \beta_ r| <1/2\), and \((-t)_{t_ r}^{\beta_ r}\) is defined by \(\exp \{i\beta_ r \arg (-t/t_ r)\}\), with \(| \arg (-t/t_ r)| <\pi\). Such symbols arise in physical applications and were studied by Fisher and Hartwig [Adv. Chem. Phys. 15, 333-353 (1968)], where it was conjectured that the \(D_ n(a)\) are asymptotically equal to \(G(b)^ nn^ q\tilde E(a)\), where \(q=\sum (A^ 2_ r-b^ 2_ r)\) and G(b), \(\tilde E(\)a) are certain non-zero constants. By considering the Toeplitz operator T(A) as acting on weighted Hilbert spaces, the present authos prove this conjecture for the symbols described above.
Reviewer: J.Butz

MSC:
47B35 Toeplitz operators, Hankel operators, Wiener-Hopf operators
15A15 Determinants, permanents, traces, other special matrix functions
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Basor, E., Asymptotic formulas for Toeplitz determinants, Trans. amer. math. soc., 239, 33-65, (1978) · Zbl 0409.47018
[2] Basor, E., A localization theorem for Toeplitz determinants, Indiana univ. math. J., 28, 975-983, (1979) · Zbl 0396.47018
[3] Basor, E.; Helton, J.W., A new proof of the szegö limit theorem and new results for Toeplitz operators with discontinuous symbol, J. operator theory, 3, 23-39, (1980) · Zbl 0439.47023
[4] Basor, E.; Widom, H., Toeplitz and Wiener-Hopf determinants with piecewise continuous symbols, J. funct. anal., 50, 387-413, (1983) · Zbl 0509.47020
[5] Blecher, P.M., On the conjecture of Fisher and Hartwig in the theory of Toeplitz matrices, Funktsional anal. i prilozhen, 16, No. 2, (1982), [Russian] · Zbl 0509.15010
[6] Böttcher, A., Toeplitz determinants with piecewise continuous generating function, Z. anal. anwendungen, 1, No. 2, 23-39, (1982) · Zbl 0519.47015
[7] Böttcher, A.; Silbermann, B., The asymptotic behavior of Toeplitz determinants for generating functions with zeros of integral orders, Math. nachr., 102, 79-105, (1981) · Zbl 0479.47025
[8] Böttcher, A.; Silbermann, B., Invertibility and asymptotics of Toeplitz matrices, (1983), Akademie-Verlag Berlin · Zbl 0578.47015
[9] Douglas, R.G., Banach algebra techniques in the theory of Toeplitz operators, () · Zbl 0252.47025
[10] Dudučava, R.V., On discrete Wiener-Hopf equations, (), 42-59, [Russian] · Zbl 0317.47019
[11] Fisher, M.E.; Hartwig, R.E., Toeplitz determinants: some applications, theorems, and conjectures, Adv. in chem. phys., 15, 333-353, (1968)
[12] Gohberg, I.C.; Feldman, I.A., Convolution equations and projection methods for their solution, () · Zbl 0278.45008
[13] Gohberg, I.C.; Krein, M.G., Introduction to the theory of linear nonselfadjoint operators, () · Zbl 0181.13504
[14] Gohberg, I.C.; Krupnik, N.Ya., On the algebra generated by Toeplitz matrices, Funktsional anal. i prilozhen, 3, No. 2, 46-56, (1969), [Russian]
[15] Gohberg, I.; Krupnik, N., Einführung in die theorie der eindimensionalen singulären integraloperatoren, (1979), Birkhäuser-Verlag Basel · Zbl 0413.47040
[16] Lenard, A., Some remarks on large Toeplitz determinants, Pacific J. math., 42, 137-145, (1972) · Zbl 0255.42005
[17] Peller, V.V., Hankel operators of the class \(b\)_p and their applications (rational approximation, Gaussian processes, the majorization problem for operators), Mat. sb. N.S., 113, No. 4, 244-272, (1980), [Russian]
[18] Roch, S.; Silbermann, B., Toeplitz-like operators, quasicommutator ideals, numerical analysis, I, () · Zbl 0582.47028
[19] Silbermann, B., The strong szegö limit theorem for a class of singular generating functions, I, Demonstratio math., 14, No. 3, 647-667, (1981) · Zbl 0489.47014
[20] Silbermann, B., Lokale theorie des reduktionsverfahrens für toeplitzoperatoren, Math. nachr., 104, 137-146, (1981) · Zbl 0494.47018
[21] Verbickiǐ, I.E., On multipliers in lp spaces with weight, Mat. issled., 45, 3-16, (1977), [Russian]
[22] Verbickiǐ, I.E., On the finite section method for powers of Toeplitz matrices, Mat. issled., 47, 3-11, (1978), [Russian]
[23] Whittaker, E.T.; Watson, G.N., A course of modern analysis, (1952), Cambridge Univ. Press London/New York · Zbl 0108.26903
[24] Widom, H., Toeplitz determinants with singular generating functions, Amer. J. math., 95, 333-385, (1973) · Zbl 0275.45006
[25] Widom, H., Asymptotic behavior of block Toeplitz matrices and determinants, II, Adv. in math., 21, 1-29, (1976) · Zbl 0344.47016
[26] Zygmund, A., ()
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.