×

zbMATH — the first resource for mathematics

Random walks on free products, quotients and amalgams. (English) Zbl 0592.60052
See the preview in Zbl 0581.60055.

MSC:
60G50 Sums of independent random variables; random walks
60G07 General theory of stochastic processes
47A10 Spectrum, resolvent
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1007/BF01766017 · Zbl 0527.60011 · doi:10.1007/BF01766017
[2] DOI: 10.1007/BF01383714 · Zbl 0564.60069 · doi:10.1007/BF01383714
[3] DOI: 10.1007/BF01773513 · Zbl 0536.43021 · doi:10.1007/BF01773513
[4] DOI: 10.1007/BF01762541 · Zbl 0565.43005 · doi:10.1007/BF01762541
[5] DOI: 10.1090/S0002-9947-1959-0109367-6 · doi:10.1090/S0002-9947-1959-0109367-6
[6] DOI: 10.1016/0022-1236(84)90071-5 · Zbl 0549.43002 · doi:10.1016/0022-1236(84)90071-5
[7] DOI: 10.1007/BF01000210 · Zbl 0562.60011 · doi:10.1007/BF01000210
[8] An introduction to orthogonal polynomials (1978) · Zbl 0389.33008
[9] Lecture Notes in Statistics 8 pp 73– (1981)
[10] DOI: 10.1016/0022-1236(86)90007-8 · Zbl 0619.43003 · doi:10.1016/0022-1236(86)90007-8
[11] Lecture Notes in Math 706 pp 126– (1979)
[12] Symposia Math 9 (1972)
[13] DOI: 10.1137/1016082 · Zbl 0294.05002 · doi:10.1137/1016082
[15] J. Fac. Sci. Univ. Tokyo Sec 31 pp 297– (1984)
[16] Springer Lecture Notes in Mathematics 1064 pp 467– (1984)
[17] Amer. Math. Soc. Colloq. Publications XXIII (1975)
[18] The resolvent for simple random walks on the free product of two discrete groups
[19] Trees (1980)
[20] Banach lattices and positive operators, Grundlehren der Math. Wissen. 215 (1974) · Zbl 0296.47023
[21] DOI: 10.1007/BF00533464 · Zbl 0362.60075 · doi:10.1007/BF00533464
[22] Lecture Notes in Pure and Applied Mathematics 87 (1983)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.