×

Effects of mass transfer on the stagnation point flow of an upper-convected Maxwell (UCM) fluid. (English) Zbl 1308.76011

Summary: This article deals with the effects of mass transfer on the two-dimensional stagnation point flow of an upper-convected Maxwell (UCM) fluid over a stretching surface. The similarity transformations convert the governing nonlinear partial differential equation into nonlinear ordinary differential equation. Computations for the outcoming systems are presented by a homotopy analysis method (HAM). Graphical results for the velocity and concentration fields are sketched and discussed.

MSC:

76A05 Non-Newtonian fluids
76W05 Magnetohydrodynamics and electrohydrodynamics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Fetecau, C.; Fetecau, C.: Starting solutions for the motion of a second grade fluid due to longitudinal and torsional oscillations of a circular cylinder, Int. J. Engng. sci. 44, 788-796 (2006) · Zbl 1213.76014
[2] Fetecau, C.; Hayat, T.; Fetecau, C.: Steady-state solutions for some simple flows of generalized Burgers fluids, Int. J. Nonlinear mech. 41, 880-887 (2006) · Zbl 1160.76343
[3] Fetecau, C.; Fetecau, C.; Kamran, M.; Vieru, D.: Exact solutions for the flow of a generalized Oldroyd-B fluid induced by a constantly accelerating plate between two side walls perpendicular to the plate, J. non-Newtonian fluid mech. 156, 189-201 (2009) · Zbl 1274.76107
[4] Tan, W. C.; Masuoka, T.: Stokes problem for a second grade fluid in a porous half space with heated boundary, Int. J. Nonlinear mech. 40, 515-522 (2005) · Zbl 1349.76830
[5] Tan, W. C.; Feng, X.; Lan, W.: An exact solution of unsteady Couette flow of generalized second grade fluid, Chin. sci. Bull. 47, 1780-1783 (2002)
[6] Cortell, R.: A note on flow and heat transfer of a viscoelastic fluid over a stretching sheet, Int. J. Nonlinear mech. 41, 78-85 (2006) · Zbl 1160.80302
[7] Mekheimer, K. S.: Effect of the induced magnetic field on peristaltic flow of a couple stress fluid, Phys. lett. A 372, 4271-4278 (2008) · Zbl 1221.76231
[8] Haroun, M. H.: Effect of Deborah number and phase difference of peristaltic transport of a third order fluid in an asymmetric channel, Comm. nonlinear sci. Numer. simulat. 12, 1464-1480 (2007) · Zbl 1127.76069
[9] Hayat, T.; Mustafa, M.; Pop, I.: Heat and mass transfer for Sorét and dufour’s effect on mixed convection boundary layer flow over a stretching vertical surface in a porous medium filled with a viscoelastic fluid, Comm. nonlinear sci. Numer. simulat. 15, 1183-1196 (2010) · Zbl 1221.80005
[10] Hayat, T.; Iram, Sania; Javed, T.; Asghar, S.: Shrinking flow of second grade fluid in a rotating frame: an analytic solution, Comm. nonlinear sci. Numer. simulat. 15, 2932-2941 (2010) · Zbl 1222.76074
[11] Kendoush, A. A.: Theory of stagnation region heat and mass transfer to fluid jets impinging normally on solid surfaces, Chem. engng. Processing 37, 223-228 (1998)
[12] Liu, I. C.: A note on heat and mass transfer for a hydromagnetic flow over a stretching sheet, Int. com. Heat mass transfer 32, 1075-1084 (2005)
[13] Cortell, R.: Toward an understanding of the motion and mass transfer with chemically reactive species for two classes of viscoelastic fluid over a porous stretching sheet, Chem. engng. Processing: process intensification 46, 982-989 (2007)
[14] Andersson, H. I.; Hansen, O. R.; Holmedal, B.: Diffusion of a chemically reactive species from a stretching sheet, Int. J. Heat mass transfer 37, 659-664 (1994) · Zbl 0900.76609
[15] Takhar, H. S.; Chamkha, A. J.; Nath, G.: Flow and mass transfer on a stretching sheet with magnetic field and chemical reactive species, Int. J. Engng. sci. 38, 1303-1314 (2000) · Zbl 1210.76205
[16] Akyilidiz, F. T.; Bellout, H.; Vajravelu, K.: Diffusion of chemical reactive species in porous medium over a stretching sheet, J. math. Anal. appl. 320, 322-339 (2006) · Zbl 1104.35038
[17] Layek, G. C.; Mukhopadhyay, S.; Samad, S. A.: Heat and mass transfer analysis for boundary layer stagnation-point flow towards a heated porous stretching sheet with heat absorption/generation and suction/blowing, Int. com. Heat mass transfer 34, 347-356 (2007)
[18] T. Hayat, M. Awais and M. Sajid, Similar solutions of stretching flow with mass transfer, Int. J. Numer. Meth. Fluids, doi:10.1002/fld.2181. · Zbl 1342.76101
[19] T. Hayat and M. Awais, Simultaneous effects of heat and mass transfer on time-dependent flow over a stretching surface, Int. J. Numer. Meth. Fluids, doi:10.1002/fld.2414. · Zbl 1426.76031
[20] Hiemenz, K.: Dei grenzschicht an einem in den gleichformigen flussigkeitsstrom eingetauchten geraden kreiszylinder, Dingl. polytech. Journal 32, 321-410 (1911)
[21] Chiam, T. C.: Stagnation-point flow towards a stretching plate, J. phys. Soc. jpn. 63, 2443-2444 (1994)
[22] Sadeghy, K.; Hajibeygi, H.; Taghavi, S. M.: Stagnation-point flow of upper-convected Maxwell fluid, Int. J. Nonlinear mech. 41, 242-1247 (2006)
[23] Mahapatra, T. R.; Nandy, S. K.; Gupta, A. S.: Analytical solution of magnetohydrodynamic stagnation-point flow of a power-law fluid towards a stretching surface, Appl. math. Comput. 215, 1696-1710 (2009) · Zbl 1422.76203
[24] Ishak, A.; Nazar, R.; Arifin, N. M.; Pop, I.: Dual solutions in mixed convection flow near a stagnation point on a vertical porous plate, Int. J. Thermal sciences 47, 417-422 (2008) · Zbl 1152.80307
[25] Hayat, T.; Javed, T.; Abbas, Z.: MHD flow of a micropolar fluid near a stagnation-point towards a non-linear stretching surface, Nonlinear analysis: real world applications 10, 1514-1526 (2009) · Zbl 1160.76055
[26] Abbas, Z.; Wang, Y.; Hayat, T.; Oberlack, M.: Mixed convection in the stagnation-point flow of a Maxwell fluid towards a vertical stretching surface, Nonlinear analysis: real world applications 11, 3218-3228 (2010) · Zbl 1196.35160
[27] Hayat, T.; Nawaz, M.: Unsteady stagnation point flow of viscous fluid caused by an impulsively rotating disk, J. Taiwan insti. Chem. engineers 42, 41-49 (2011)
[28] Liao, S. J.: Beyond perturbation: introduction to homotopy analysis method, (2003)
[29] Abbasbandy, S.: Solitary wave solutions to the Kuramoto – Sivashinsky by means of homotopy analysis method, Nonlinear dynamics 52, 35-40 (2008) · Zbl 1173.35646
[30] Abbasbandy, S.: Approximate solution of nonlinear model of diffusion and reaction catalysts by means of the homotopy analysis method, Chem. eng. J. 136, 114-150 (2008)
[31] Abbasbandy, S.: Solitary wave solutions to the modified form of Camassa – Holm equation by means of the homotopy analysis method, Chaos, solitons & fractals 39, 428-435 (2009) · Zbl 1197.65199
[32] Bataineh, A. S.; Noorani, M. S. M.; Hashim, I.: Approximate solutions of singular two-point BVPs by modified homotopy analysis method, Phys. lett. A 372, 4062-4066 (2008) · Zbl 1220.34026
[33] Hayat, T.; Sajjad, R.; Asghar, S.: Series solution for MHD channel flow of a Jeffery fluid, Comm. nonlinear sci. Numer. simulat. 15, 2400-2406 (2010) · Zbl 1222.76076
[34] Hashim, I.; Abdulaziz, O.; Momani, S.: Homotopy analysis method for fractional ivps, Comm. nonlinear sci. Numer. simulat. 14, 674-684 (2009) · Zbl 1221.65277
[35] T. Hayat, M. Qasim and Z. Abbas, Homotopy solution for unsteady three-dimensional MHD flow and mass transfer in a porous space. Comm. Nonlinear Sci. Numer. Simulat. doi:10.1016/j.cnsns.2009.09.013. · Zbl 1222.76075
[36] T. Hayat and M. Awais, Three-dimensional flow of upper-convected Maxwell (UCM) fluid, Int. J. Numer. Meth. Fluids, doi:10.1002/fld.2289. · Zbl 1452.76013
[37] Hayat, T.; Abbas, Z.; Sajid, M.: Series solution for an upper-convected Maxwell (UCM) fluid over a porous stretching plate, Phys lett. A 358, 396-403 (2006) · Zbl 1142.76511
[38] Hayat, T.; Abbas, Z.; Sajid, M.: MHD boundary layer flow of an upper-convected Maxwell (UCM) fluid in a porous channel, Theor. comput. Fluid dyn. 20, 229-238 (2006) · Zbl 1109.76065
[39] Hayat, T.; Sajid, M.: Homotopy analysis of MHD boundary layer flow of an upper-convected Maxwell (UCM) fluid, Int. J. Eng. sci. 45, 393-401 (2007) · Zbl 1213.76137
[40] Aliakbar, V.; Pahlavan, A. A.; Sadeghy, K.: The influence of thermal radiation on MHD flow of Maxwellian fluids above stretching sheets, Comm. nonlinear sci. Num. simu. 14, 779-794 (2009)
[41] Pahlavan, A. A.; Aliakbar, V.; Farahani, F. V.; Sadeghy, K.: MHD flows of UCM fluids above porous stretching sheets using two-auxiliary-parameter homotopy analysis method, Comm. nonlinear sci. Numer. simulat. 14, 473-488 (2009)
[42] Pahlavan, A. A.; Sadeghy, K.: On the use of homotopy analysis method for solving unsteady MHD flow of Maxwellian fluids above impulsively stretching sheets, Comm. nonlinear sci. Num. simu. 14, 1355-1365 (2009) · Zbl 1221.76213
[43] Hayat, T.; Abbas, Z.; Ali, N.: MHD flow and mass transfer of a upper-convected Maxwell fluid past a porous shrinking sheet with chemical reaction species, Phys. lett. A 372, 4698-4704 (2008) · Zbl 1221.76031
[44] Hayat, T.; Abbas, Z.: Channel flow of a Maxwell fluid with chemical reaction, Z. angew. Math. phys. 59, 124-144 (2008) · Zbl 1133.76053
[45] Hayat, T.; Abbas, Z.; Sajid, M.: MHD stagnation-point flow of an upper-convected Maxwell fluid over a stretching surface, Chaos, solitons and fractals 39, 840-848 (2009) · Zbl 1197.76006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.