×

zbMATH — the first resource for mathematics

A mesh-free convex approximation scheme for Kohn-sham density functional theory. (English) Zbl 1219.65058
Summary: Density functional theory developed by Hohenberg, Kohn and Sham is a widely accepted, reliable ab initio method. We present a non-periodic, real space, mesh-free convex approximation scheme for Kohn-Sham density functional theory. We rewrite the original variational problem as a saddle point problem and discretize it using basis functions which form the Pareto optimum between competing objectives of maximizing entropy and minimizing the total width of the approximation scheme. We show the utility of the approximation scheme in performing both all-electron and pseudopotential calculations, the results of which are in good agreement with literature.

MSC:
65K10 Numerical optimization and variational techniques
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Hohenberg, P.; Kohn, W., Inhomogeneous electron gas, Physical review, 136, 3B, B864-B871, (1964)
[2] Kohn, W.; Sham, L.J., Self-consistent equations including exchange and correlation effects, Physical review, 140, 4A, A1133-A1138, (1965)
[3] Langreth, D.C.; Mehl, M.J., Beyond the local-density approximation in calculations of ground-state electronic properties, Physical review B, 28, 4, 1809-1834, (1983)
[4] Perdew, J.P.; Chevary, J.A.; Vosko, S.H.; Jackson, K.A.; Pederson, M.R.; Singh, D.J.; Fiolhais, C., Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation, Physical review B, 46, 11, 6671-6687, (1992)
[5] Kresse, G.; Furthmüller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Physical review B, 54, 16, 11169-11186, (1996)
[6] Segall, M.D.; Lindan, P.J.D.; Probert, M.J.; Pickard, C.J.; Hasnip, P.J.; Clark, S.J.; Payne, M.C., First-principles simulation: ideas, illustrations and the CASTEP code, Journal of physics: condensed matter, 14, 11, 2717-2744, (2002)
[7] Gonze, X.; Beuken, J.M.; Caracas, R.; Detraux, F.; Fuchs, M.; Rignanese, G.M.; Sindic, L.; Verstraete, M.; Zerah, G.; Jollet, F.; Torrent, M.; Roy, A.; Mikami, M.; Ghosez, P.; Raty, J.Y.; Allan, D.C., First-principles computation of material properties: the abinit software project, Computational materials science, 25, 15, 478-492, (2002)
[8] Ismail-Beigi, S.; Arias, T.A., New algebraic formulation of density functional calculation, Computer physics communications, 128, 1-2, 1-45, (2000) · Zbl 1003.81036
[9] Hehre, W.J.; Stewart, R.F.; Pople, J.A., Self-consistent molecular-orbital methods. I. use of Gaussian expansions of Slater-type atomic orbitals, The journal of chemical physics, 51, 6, 2657-2664, (1969)
[10] Wills, J.M.; Cooper, B.R., Synthesis of band and model Hamiltonian theory for hybridizing cerium systems, Physical review B, 36, 7, 3809-3823, (1987)
[11] Soler, J.M.; Artacho, E.; Gale, J.D.; García, A.; Junquera, J.; Ordejón, P.; Sánchez-Portal, D., The siesta method for ab initio order-n materials simulation, Journal of physics: condensed matter, 14, 11, 2745-2779, (2002)
[12] Skylaris, C.-K.; Haynes, P.D.; Mostofi, A.A.; Payne, M.C., Introducing ONETEP: linear-scaling density functional simulations on parallel computers, The journal of chemical physics, 122, 8, 084119, (2005)
[13] Bowler, D.; Choudhury, R.; Gillan, M.; Miyazaki, T., Recent progress with large-scale ab initio calculations: the CONQUEST code, Physica status solidi B - basic solid state physics, 243, 5, 989-1000, (2006)
[14] Chelikowsky, J.R.; Troullier, N.; Saad, Y., Finite-difference-pseudopotential method: electronic structure calculations without a basis, Physical review letters, 72, 8, 1240-1243, (1994)
[15] Castro, A.; Appel, H.; Oliveira, M.; Rozzi, C.A.; Andrade, X.; Lorenzen, F.; Marques, M.A.L.; Gross, E.K.U.; Rubio, A., Octopus: a tool for the application of time-dependent density functional theory, Physica status solidi B - basic solid state physics, 243, 11, 2465-2488, (2006)
[16] L. Lehtovaara, V. Havu, M. Puska, All-electron density functional theory and time-dependent density functional theory with high-order finite elements, Journal of Chemical Physics 131(5). doi:10.1063/1.3176508.
[17] Blum, V.; Gehrke, R.; Hanke, F.; Havu, P.; Havu, V.; Ren, X.; Reuter, K.; Scheffler, M., Ab initio molecular simulations with numeric atom-centered orbitals, Computer physics communications, 180, 11, 2175-2196, (2009) · Zbl 1197.81005
[18] Mortensen, J.J.; Hansen, L.B.; Jacobsen, K.W., Real-space grid implementation of the projector augmented wave method, Phys. rev. B, 71, 3, 035109, (2005)
[19] Suryanarayana, P.; Gavini, V.; Blesgen, T.; Bhattacharya, K.; Ortiz, M., Non-periodic finite-element formulation of kohn – sham density functional theory, Journal of the mechanics and physics of solids, 58, 2, 256-280, (2010) · Zbl 1193.81006
[20] Pask, J.E.; Klein, B.M.; Fong, C.Y.; Sterne, P.A., Real-space local polynomial basis for solid-state electronic-structure calculations: a finite-element approach, Physical review B, 59, 19, 12352-12358, (1999)
[21] Tsuchida, E., Ab initio molecular-dynamics study of liquid formamide, The journal of chemical physics, 121, 10, 4740-4746, (2004)
[22] Zhang, D.; Shen, L.; Zhou, A.; Gong, X.-G., Finite element method for solving kohn – sham equations based on self-adaptive tetrahedral mesh, Physics letters A, 372, 30, 5071-5076, (2008) · Zbl 1221.81225
[23] Arroyo, M.; Ortiz, M., Local maximum-entropy approximation schemes: a seamless bridge between finite elements and meshfree methods, International journal for numerical methods in engineering, 65, 13, 2167-2202, (2006) · Zbl 1146.74048
[24] Cyron, C.J.; Arroyo, M.; Ortiz, M., Smooth, second order, non-negative meshfree approximants selected by maximum entropy, International journal for numerical methods in engineering, 79, 13, 1605-1632, (2009) · Zbl 1176.74208
[25] Parr, R.; Yang, W., Density-functional theory of atoms and molecules, (1989), Oxford University Press
[26] Finnis, M., Interatomic forces in condensed matter, (2003), Oxford University Press
[27] Perdew, J.P.; Wang, Y., Accurate and simple analytic representation of the electron – gas correlation energy, Physical review B, 45, 23, 13244-13249, (1992)
[28] Bachelet, G.B.; Hamann, D.R.; Schlüter, M., Pseudopotentials that work: from H to pu, Physical review B, 26, 8, 4199-4228, (1982)
[29] Rappe, A.M.; Rabe, K.M.; Kaxiras, E.; Joannopoulos, J.D., Optimized pseudopotentials, Physical review B, 41, 2, 1227-1230, (1990)
[30] Troullier, N.; Martins, J.L., Efficient pseudopotentials for plane-wave calculations, Physical review B, 43, 3, 1993-2006, (1991)
[31] Vanderbilt, D., Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Physical review B, 41, 11, 7892-7895, (1990)
[32] Kleinman, L.; Bylander, D.M., Efficacious form for model pseudopotentials, Physical review letters, 48, 20, 1425-1428, (1982)
[33] Rosolen, A.; Millan, D.; Arroyo, M., On the optimum support size in meshfree methods: a variational adaptivity approach with maximum-entropy approximants, International journal for numerical methods in engineering, 82, 7, 868-895, (2010) · Zbl 1188.74086
[34] A. Bompadre, M. Ortiz, Convergence analysis of local maximum-entropy approximation schemes, in preparation, 2011.
[35] Saad, Y., Numerical methods for large eigenvalue problems, (1992), Manchester University Press · Zbl 0991.65039
[36] Dennis, J.; Schnabel, R., Numerical methods for unconstrained optimization and nonlinear equations, (1996), SIAM Philadelphia · Zbl 0847.65038
[37] Saad, Y.; Schultz, M.H., GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM journal on scientific and statistical computing, 7, 3, 856-869, (1986) · Zbl 0599.65018
[38] van der Vorst, H.A., BI-CGSTAB: a fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems, SIAM journal on scientific and statistical computing, 13, 2, 631-644, (1992), http://dx.doi.org/10.1137/0913035 · Zbl 0761.65023
[39] Freund, R.W., A transpose-free quasi-minimal residual algorithm for non-Hermitian linear systems, SIAM journal on scientific computing, 14, 2, 470-482, (1993), http://dx.doi.org/10.1137/0914029 · Zbl 0781.65022
[40] Brown, P.N., A local convergence theory for combined inexact-Newton/finite-difference projection methods, SIAM journal on numerical analysis, 24, 2, 407-434, (1987) · Zbl 0618.65037
[41] Brown, P.N.; Saad, Y., Hybrid Krylov methods for nonlinear systems of equations, SIAM journal on scientific and statistical computing, 11, 3, 450-481, (1990) · Zbl 0708.65049
[42] Solin, S.K.; Dolezel, P.I., Higher-order finite element methods, (2004), Chapman and Hall
[43] Kotochigova, S.; Levine, Z.H.; Shirley, E.L.; Stiles, M.D.; Clark, C.W., Local-density-functional calculations of the energy of atoms, Physical review A, 55, 1, 191-199, (1997)
[44] Engel, E.; Höck, A.; Schmid, R.N.; Dreizler, R.M.; Chetty, N., Role of the core – valence interaction for pseudopotential calculations with exact exchange, Physical review B, 64, 12, 125111, (2001)
[45] Fiolhais, C.; Perdew, J.P.; Armster, S.Q.; MacLaren, J.M.; Brajczewska, M., Dominant density parameters and local pseudopotentials for simple metals, Physical review B, 51, 20, 14001-14011, (1995)
[46] Nogueira, F.; Fiolhais, C.; He, J.; Perdew, J.P.; Rubio, A., Transferability of a local pseudopotential based on solid-state electron density, Journal of physics: condensed matter, 8, 3, 287-302, (1996)
[47] Fiolhais, C.; Nogueira, F.; Henriques, C., Evanescent core pseudopotential: applications to surfaces and clusters, Proceedings of the 18th international seminar on surface physics, Progress in surface science, 53, 2-4, 315-322, (1996)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.