×

zbMATH — the first resource for mathematics

A relaxed dimensional factorization preconditioner for the incompressible Navier-Stokes equations. (English) Zbl 1419.76433
Summary: We introduce a Relaxed Dimensional Factorization (RDF) preconditioner for saddle point problems. Properties of the preconditioned matrix are analyzed and compared with those of the closely related Dimensional Splitting (DS) preconditioner recently introduced by Benzi and Guo [7]. Numerical results for a variety of finite element discretizations of both steady and unsteady incompressible flow problems indicate very good behavior of the RDF preconditioner with respect to both mesh size and viscosity.

MSC:
76M10 Finite element methods applied to problems in fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Amestoy, P.R.; Davis, T.A.; Duff, I.S., An approximate minimum degree ordering algorithm, SIAM J. matrix anal. appl., 17, 886-905, (1996) · Zbl 0861.65021
[2] Bai, Z.-Z.; Golub, G.H.; Ng, M.K., Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems, SIAM J. matrix anal. appl., 24, 603-626, (2003) · Zbl 1036.65032
[3] Bai, Z.-Z.; Ng, M.K., On inexact preconditioners for nonsymmetric matrices, SIAM J. sci. comput., 26, 1710-1724, (2005) · Zbl 1077.65043
[4] Bai, Z.-Z., Structured preconditioners for nonsingular matrices of block two-by-two structures, Math. comput., 75, 791-815, (2006) · Zbl 1091.65041
[5] Benzi, M.; Golub, G.H., A preconditioner for generalized saddle point problems, SIAM J. matrix anal. appl., 26, 20-41, (2004) · Zbl 1082.65034
[6] Benzi, M.; Golub, G.H.; Liesen, J., Numerical solution of saddle point problems, Acta numerica, 14, 1-137, (2005) · Zbl 1115.65034
[7] Benzi, M.; Guo, X.-P., A dimensional split preconditioner for Stokes and linearized navier – stokes equations, Appl. numer. math., 61, 66-76, (2011) · Zbl 1302.65074
[8] Benzi, M.; Liu, J., An efficient solver for the navier – stokes equations in rotation form, SIAM J. sci. comput., 9, 1959-1981, (2007) · Zbl 1154.76041
[9] Benzi, M.; Olshanskii, M.A., An augmented Lagrangian-based approach to the Oseen problem, SIAM J. sci. comput., 28, 2095-2113, (2006) · Zbl 1126.76028
[10] Benzi, M.; Olshanskii, M.A.; Wang, Z., Modified augmented Lagrangian preconditioners for the incompressible navier – stokes equations, Int. J. numer. methods fluids, (2010)
[11] Benzi, M.; Simoncini, V., On the eigenvalues of a class of saddle point matrices, Numer. math., 103, 173-196, (2006) · Zbl 1103.65033
[12] Benzi, M.; Wathen, A.J., Some preconditioning techniques for saddle point problems, (), 195-211 · Zbl 1152.65425
[13] J. Boyle, M. Mihajlovic, J. Scott, HSL MI20: An efficient AMG preconditioner, Technical Report RAL-TR-2007-021, Rutherford Appleton Laboratory, Chilton, Oxfordshire, UK, 2007.
[14] Boyle, J.; Mihajlovic, M.D.; Scott, J.A., HSL MI20: an efficient AMG preconditioner for finite element problems in 3D, Int. J. numer. methods eng., 82, 64-98, (2010)
[15] R. Bridson, KKTDirect: a direct solver package for saddle-point (KKT) matrices, Preprint, Department of Computer Science, University of British Columbia, 2009.
[16] Cao, Z.-H., A note on constraint preconditioning for nonsymmetric indefinite matrices, SIAM J. matrix anal. appl., 24, 121-125, (2002) · Zbl 1018.65060
[17] Chan, L.; Ng, M.K.; Tsing, N., Spectral analysis of the HSS preconditioners, Numer. math. theor. methods appl., 1, 113-137, (2008)
[18] de Niet, A.C.; Wubs, F.W., Numerically stable LDL^T-factorization of F-type saddle point matrices, IMA J. numer. anal., 29, 208-234, (2009) · Zbl 1161.65022
[19] Dollar, H.S.; Wathen, A.J., Approximate factorization constraint preconditioners for saddle-point matrices, SIAM J. sci. comput., 27, 1555-1572, (2006) · Zbl 1105.65047
[20] Elman, H.C.; Howle, V.E.; Shadid, J.; Silvester, D.J.; Tuminaro, R., Least squares preconditioners for stabilized discretizations of the navier – stokes equations, SIAM J. sci. comput., 30, 290-311, (2007) · Zbl 1166.65326
[21] Elman, H.C.; Ramage, A.; Silvester, D.J., IFISS: a Matlab toolbox for modelling incompressible flow, ACM trans. math. soft., 33, (2007), Article 14 · Zbl 1365.65326
[22] Elman, H.C.; Silvester, D.J.; Wathen, A.J., Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics, Oxford series in numerical mathematics and scientific computation, (2005), Oxford University Press Oxford
[23] Elman, H.C.; Silvester, D.J.; Wathen, A.J., Performance and analysis of saddle point preconditioners for the discrete steady-state navier – stokes equations, Numer. math., 90, 665-688, (2002) · Zbl 1143.76531
[24] Elman, H.C.; Tuminaro, R.S., Boundary conditions in approximate commutator preconditioners for the navier – stokes equations, Electr. trans. numer. anal., 35, 257-280, (2009) · Zbl 1391.76539
[25] Fortin, M.; Glowinski, R., Augmented Lagrangian methods: application to the solution of boundary value problems, ()
[26] Gould, N.I.M.; Hribar, M.E.; Nocedal, J., On the solution of equality constrained quadratic programming problems arising in optimization, SIAM J. sci. comput., 23, 1375-1394, (2001)
[27] Hamilton, S.P.; Benzi, M.; Haber, E., New multigrid smoothers for the Oseen problem, Numer. linear algebr. appl., 17, 557-576, (2010) · Zbl 1240.76003
[28] Harlow, F.H.; Welch, J.E., Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface, Phys. fluids, 8, 2182-2189, (1965) · Zbl 1180.76043
[29] Horn, R.A.; Johnson, C.R., Matrix analysis, (1991), Cambridge University Press Cambridge, UK · Zbl 0729.15001
[30] Ipsen, I.C.F., A note on preconditioning nonsymmetric matrices, SIAM J. sci. comput., 23, 1050-1051, (2001) · Zbl 0998.65049
[31] Jiranek, P.; Rozloznik, M., Adaptive version of simpler GMRES, Numer. algor., 53, 93-112, (2010) · Zbl 1188.65033
[32] Keller, C.; Gould, N.I.M.; Wathen, A.J., Constraint preconditioning for indefinite linear systems, SIAM J. matrix anal. appl., 21, 1300-1317, (2000) · Zbl 0960.65052
[33] Lukšan, L.; Vlček, J., Indefinitely preconditioned inexact Newton method for large sparse equality constrained non-linear programming problems, Numer. linear algebr. appl., 5, 219-247, (1998) · Zbl 0937.65066
[34] Murphy, M.F.; Golub, G.H.; Wathen, A.J., A note on preconditioning for indefinite linear systems, SIAM J. sci. comput., 21, 1969-1972, (2000) · Zbl 0959.65063
[35] Perugia, I.; Simoncini, V., Block-diagonal and indefinite symmetric preconditioners for mixed finite element formulations, Numer. linear algebr. appl., 7, 585-616, (2000) · Zbl 1051.65038
[36] Rusten, T.; Winther, R., A preconditioned method for saddle point problems, SIAM J. matrix anal. appl., 13, 887-904, (1992) · Zbl 0760.65033
[37] Saad, Y., Iterative methods for sparse linear systems, (2003), Society for Industrial and Applied Mathematics Philadelphia, PA · Zbl 1002.65042
[38] Walker, H.F.; Zhou, L., A simpler GMRES, Numer. linear algebr. appl., 1, 571-581, (1994) · Zbl 0838.65030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.