Holmes, Philip; Williams, R. F. Knotted periodic orbits in suspensions of Smale’s horseshoe: torus knots and bifurcation sequences. (English) Zbl 0593.58027 Arch. Ration. Mech. Anal. 90, 115-194 (1985). Consider a quadratic mapping due to Hénon (1976), \[ (*)\quad G_{\mu,\epsilon}(x,y)=(y,-\epsilon x+\mu -y^ 2),\quad x,y\in {\mathbb{R}}. \] For suitable \((\mu,\epsilon)\in {\mathbb{R}}^ 2\), \(G_{\mu,\epsilon}\) has a hyperbolic horseshoe. In earlier work [the first author and D. C. Whitley, Philos. Trans. R. Soc. Lond., A 311, 43-102 (1984; Zbl 0556.58023)], it was found that the bifurcation sequences of maps like (*) occurring as \(\mu\) increases varied drastically as \(\epsilon\) changed from 0 to 1. But the authors say that the results of the above paper were only partially satisfactory. This paper improves some of them by considering the knot type of periodic orbits. For \(\epsilon =1\) and \(\mu\in (-1,3)\), \(G_{\mu,1}\) has an elliptic fixed point b, where the eigenvalues \(\lambda_ i\) of \(DG_{\mu,1}(b)\) satisfy \(\lambda_ 1\lambda_ 2=1\). As \(\mu\in (-1,3)\) passes a countable set of values \(\mu\) (p,q), the \(\lambda_ i=e^{\pm i\theta}\) pass each root of unity \((\theta =2\pi p/q)\), at which pairs of periodic orbits of period q bifurcate from b. One orbit is a saddle and the other a sink for \(\epsilon <1\), a source for \(\epsilon >1\) and elliptic for \(\epsilon =1\). The orbits vanish by coalescing pairwise in saddle-node bifurcations. In the \(\epsilon =1\) case, these orbits are called resonant Hamiltonian bifurcations. Consider the suspension of the Hénon map \(G_{\mu,\epsilon}\). The two closed orbits obtained by suspension from the two periodic orbits created in a saddle-node bifurcation above (resonant bifurcation) have the same knot type. Moreover, the knot type cannot change as the parameters \(\epsilon\), \(\mu\) vary. It is shown that the orbits created in the resonant Hamiltonian bifurcation at \(\mu =\mu (p,q)\) are (p,q) torus knots of period q (Proposition 5.1). In relation to these resonant bifurcations, this paper studies the torus knots and the bifurcations in the suspension of horseshoe using the method of knot holders (Birman-Williams (1973)), Braid theory and kneading theory. The following are the main theorems. Theorem 6.1.2a. Among the (p,q)-torus knots in the Smale horseshoe there are (i) two and only two of period q for \(q>2p\), and infinitely many if the period is allowed to be arbitrary; (ii) none of period q if \(q<2p\); (iii) none at all if \(q<3p/2.\) Theorem 6.1.2b. the number \(N_{p,q}\) of (p,q) torus knots of period \(p+q\) in the Lorenz knot holder satisfies \(2[q/p]\leq N_{p,q}\leq q-p+1\). There are infinitely many if the period is allowed to be arbitrary. Theorem 7.1.1. Let \((p_ i,q_ i)\), \(i=1,2\) be two pairs of relatively prime integers with \(p_ i<q_ i/2\), \(q_ i\geq 5\) and \(p_ 1/q_ 1>p_ 2/q_ 2\). Let \(\zeta_ i(\epsilon)\), \(\epsilon\in [0,1)\) denote the \(\mu\) value for which the unique pair of \((p_ i,q_ i)\) torus horseshoe knots of period q appear in a saddle-node bifurcation for the natural suspension of the Hénon map (*). Then \(\lim_{\epsilon \to 1}\zeta_ 1(\epsilon)>\lim_{\epsilon \to 1}\zeta_ 2(\epsilon)\) and \(\zeta_ 1(0)<\zeta_ 2(0).\) Corollary 7.1.2. Infinitely many saddle-node bifurcation curves cross each other on the (\(\mu\),\(\epsilon)\) parameter plane between \(\epsilon =0\) and \(\epsilon =1\). In particular, each resonant torus bifurcation sequence of period q for the area preserving suspension \((\epsilon =1)\) is precisely reversed for the one-dimensional suspension \((\epsilon =0)\). Reviewer: G.Ikegami Cited in 2 ReviewsCited in 35 Documents MSC: 37G99 Local and nonlocal bifurcation theory for dynamical systems Keywords:horseshoe diffeomorphism; torus knot; Hénon map; braid theory; kneading theory; saddle-node bifurcations; resonant Hamiltonian bifurcations; resonant bifurcation Citations:Zbl 0556.58023 PDFBibTeX XMLCite \textit{P. Holmes} and \textit{R. F. Williams}, Arch. Ration. Mech. Anal. 90, 115--194 (1985; Zbl 0593.58027) Full Text: DOI References: [1] V. I. Arnold · Zbl 0368.34015 · doi:10.1007/BF01135526 [2] V. I. Arnold [1982] ’Geometrical methods in the theory of ordinary differential equations’, Springer Verlag, Berlin, Heidelberg, New York (Russian original, Moscow, 1977). [3] V. I. Arnold & A. Avez [1968] ’Ergodic Problems of Classical Mechanics’ New York, W. A. Benjamin Inc. · Zbl 0715.70004 [4] J.-P. Babary & C. Mira [1969 [5] R. E. Bedient [1984] Classifying 3-trip Lorenz knots. Preprint, Hamilton College, N.Y. · Zbl 0576.57007 [6] P. Beiersdorfer, J.-M. Wersinger &a [7] G. D. Birkhoff [191 [8] G. D. Birkhoff [1927] ’Dynamical Systems’, A.M.S. Publications, Providence, R.I. [9] J. S. Birman [1975] ’Braids, Links and Mapping Class Groups’, Princeton University Press, Princeton, N.J. · Zbl 0305.57013 [10] J. Birman & R. F. Williams [1983 a] Topology, 22, 47–82. Knotted periodic orbits in dynamical systems I: Lorenz’s equations. · Zbl 0507.58038 · doi:10.1016/0040-9383(83)90045-9 [11] J. Birman & R. F. Williams [1983 b] Contemporary Mathematics, 20, 1–60, Knotted periodic orbits in dynamical systems II: knot holders for fibred knots. · Zbl 0526.58043 · doi:10.1090/conm/020/718132 [12] R. Bowen [1976] ’On Axiom A Diffeomorphisms’, CBMS Regional Conference Series in Mathematics 35, AMS Publications, Providence, RI. · Zbl 0383.58010 [13] A. Chenciner [1983] Bifurcations de difféomorphismes de R2 au voinsinage d’un point fixe elliptique. Les Houches Summer School Proceedings, ed. R. Helleman, G. Iooss, North Holland. [14] P. Collet & J. P. Eckmann [1980] ’Iterated Maps on the Interval as Dynamical Systems’, Birkhauser, Boston. · Zbl 0458.58002 [15] J. D. Crawford &S. Omohundro [1984] Physica 13D, 161–180, On the global structure of period doubling flows. · Zbl 0594.58038 [16] R. Devaney [1974] Personal communication. [17] R. Devaney & Z. Nitecki · Zbl 0414.58028 · doi:10.1007/BF01221362 [18] A. Douady & J. H. Hubbard [1982 [19] H. El-Hamouly & C. Mira [1981 [20] M. J. Feigenba · Zbl 0509.58037 · doi:10.1007/BF01020332 [21] J. Franks & R. F. Williams [1985] Positive braids via the Jones polynomial. Preprint, Northwestern University, Evanston, Ill. [22] B. D. Greenspan & P. J. Holmes [1983] Homoclinic orbits, subharmonics, and global bifurcations in forced oscillations. Chapter 10, pp. 172–214 in Nonlinear Dynamics and Turbulence ed. G. Barenblatt, G. Iooss and D. D. Joseph, Pitman, London. · Zbl 0532.58019 [23] B. D. Greenspan & P. J. Holmes [1984] S · Zbl 0547.34028 · doi:10.1137/0515003 [24] J. Guckenheimer · Zbl 0429.58012 · doi:10.1007/BF01982351 [25] J. Guckenheimer [1980] ’Bifurcations of Dynamical Systems’, in Dynamical Systems, ed. J. K. Moser, Birkhauser, Boston. · Zbl 0451.58025 [26] J. Guckenheimer & P. J. Holmes [1983] ’Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields’, Springer Verlag, New York. · Zbl 0515.34001 [27] J. Guckenheimer & R. F. Williams · Zbl 0436.58018 · doi:10.1007/BF02684769 [28] I. Gumowski & C. Mira [1974 [29] I. Gumowski & C. Mira [1980 a] ’Dynamique Chaotique’, Editions Cepadue, Toulouse, France. [30] I. Gumowski & C. Mira [1980 b] ’Recurrences and Discrete Dynamical Systems’, Springer Lecture Notes in Mathematics 809, Springer Verlag, Berlin, Heidelberg, New York. · Zbl 0449.58003 [31] C. Hayashi, [1964] ’Nonlinear Oscillations in Physical Systems’, McGraw Hill, New York. · Zbl 0192.50605 [32] M. Hénon · Zbl 0576.58018 · doi:10.1007/BF01608556 [33] M. W. Hirsch, C. C. Pugh & M. Shub [1977] ’Invariant Manifolds’, Lecture Notes in Mathematics No. 583, Springer Verlag, Berlin, Heidelberg, New York. [34] P. J. Holmes [1979] · Zbl 0423.34049 · doi:10.1098/rsta.1979.0068 [35] P. J. Holmes & D. C. Whitley [1983] On the Attracting Set for Duffing’s Equation II: A Geometrical Model for Moderate Force and Damping (Proc. ’Order in Chaos’, Los Alamos National Laboratory, · Zbl 0574.58024 [36] P. J. Holmes & D. C. Whitley [1984a] P · Zbl 0556.58023 · doi:10.1098/rsta.1984.0020 [37] P. J. Holmes & D. C. Whitley [1984b] On the attracting set for Duffing’s equation I: analytical methods for small force and damping; Proc. ’Year of Concentration in Partial Differential Equations and Dynamical Systems’ University of Houston, W. E. Fitzgibbon III (ed), Pitman, London. · Zbl 0554.58046 [38] G. Iooss [1979] ’Bifurcation of Maps and Applications’, North-Holland, Amsterdam. · Zbl 0408.58019 [39] M. V. Jacobson · Zbl 0497.58017 · doi:10.1007/BF01941800 [40] L. Jonker [1979 · Zbl 0425.58014 · doi:10.1112/plms/s3-39.3.428 [41] L. Jonker & D. A. R · Zbl 0475.58014 · doi:10.1007/BF01394248 [42] K. Meyer [19 · doi:10.1090/S0002-9947-1970-0259289-X [43] K. Meyer [19 · doi:10.1090/S0002-9947-1971-0271490-9 [44] J. Milnor & R. Thurston [1977] ’On Iterated Maps of the Interval I and II’ Unpublished notes, Princeton University, Princeton, NJ. [45] C. Mira [1969a [46] C. Mira [1969b [47] C. Mira [1970 [48] C. Mira [1981] Proc IX International Conference on Nonlinear Oscillations, Kiev, Sept. 1981, Chaotic dynamics in point mappings. [49] C. Mira [1982 [50] M. Misiurewicz [ · Zbl 0477.58030 · doi:10.1007/BF02698685 [51] M. Misiurewicz · Zbl 0477.58020 · doi:10.1007/BF02698686 [52] J. Moser [1973] ’Stable and Random Motions in Dynamical Systems’, Princeton University Press, Princeton, NJ. [53] A. H. Nayfeh & D. T. Mook [1979] ’Nonlinear Oscillations’, Wiley, New York. [54] S. E. Newhouse [1980] ’Lectures on Dynamical Systems’ in ’Dynamical Systems’ ed. J. K. Moser, Birkhauser, Boston. · Zbl 0444.58001 [55] H. Poincaré [1899] ’Les Méthodes Nouvelles de la Mécanique Céleste’ (3 Vols) GauthierVillars, Paris. [56] D. Rolfsen [1977] ’Knots and Links’. Publish or Perish, Berkeley, CA. [57] O. E. Rossler [ · doi:10.1111/j.1749-6632.1979.tb29482.x [58] D. Singer [ · Zbl 0391.58014 · doi:10.1137/0135020 [59] S. Smale [1963] Diffeomorphisms with many periodic points, in Differential and Combinatorial Topology, ed. S. S. Cairns, pp. 63–80, Princeton University Press, Princeton, N.J. [60] S. Smale [196 · Zbl 0202.55202 · doi:10.1090/S0002-9904-1967-11798-1 [61] C. T. Sparrow [1982] ’The Lorenz Equations: Bifurcations, Chaos and Strange Attractors’, Springer-Verlag; Berlin, Heidelberg, New York. · Zbl 0504.58001 [62] F. Takens [19 · Zbl 0266.34046 · doi:10.5802/aif.467 [63] Y. Ueda [1980] Steady motions exhibited by Duffing’s equation: a picture book of regular and chaotic motions, in ’New Approaches to Nonlinear Problems in Dynamics’ ed. P. J. Holmes, SIAM Publications, Philadelphia. [64] Y. Ueda [1981] Personal communication to P. Holmes. [65] T. Ueza & Y. Aizawa [ · Zbl 1069.37513 · doi:10.1143/PTP.68.1907 [66] S. M. Ulam & J. von Neumann [1 [67] S. J. Van Strien [1981] On the bifurcations creating horseshoes in Dynamical Systems and Turbulence, D. A. Rand and L. S. Young (eds), Springer Lecture Notes in Mathematics 898, Springer Verlag, Berlin, Heidelberg, New York. · Zbl 0491.58023 [68] Y. H. Wan [19 · Zbl 0389.58008 · doi:10.1137/0134013 [69] Y. H. Wan [1978 b] Ar · Zbl 0399.58005 · doi:10.1007/BF00250986 [70] D. C. Whitley [1982] The Bifurcations and Dynamics of Certain Quadratic Maps of the Plane, Ph. D. Thesis, University of Southampton, U.K. [71] R. F. Williams · Zbl 0279.58013 · doi:10.1007/BF02684369 [72] R. F. Williams [1977] Springer Lectures Notes in Math. No. 615, Turbulence Seminar, 94–112, The Structure of Lorenz attractors. [73] R. F. Williams · Zbl 0484.58021 · doi:10.1007/BF02684770 [74] J. A. Yorke & K. T. Alligood [19 · Zbl 0541.58039 · doi:10.1090/S0273-0979-1983-15191-1 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.