March, Peter Brownian motion and harmonic functions on rotationally symmetric manifolds. (English) Zbl 0593.60078 Ann. Probab. 14, 793-801 (1986). Summary: We consider Brownian motion X on a rotationally symmetric manifold \(M_ g=({\mathbb{R}}^ n,ds^ 2),\quad ds^ 2=dr^ 2+g(r)^ 2d\theta^ 2.\) An integral test is presented which gives a necessary and sufficient condition for the nontriviality of the invariant \(\sigma\)-field of X, hence for the existence of nonconstant bounded harmonic functions on \(M_ g\). Conditions on the sectional curvatures are given which imply the convergence or the divergence of the test integral. Cited in 13 Documents MSC: 60J65 Brownian motion 58J65 Diffusion processes and stochastic analysis on manifolds Keywords:skew product; sectional curvature; rotationally symmetric manifold PDF BibTeX XML Cite \textit{P. March}, Ann. Probab. 14, 793--801 (1986; Zbl 0593.60078) Full Text: DOI