×

Continuous-time quantum Monte Carlo impurity solvers. (English) Zbl 1221.81221

Summary: Continuous-time quantum Monte Carlo impurity solvers are algorithms that sample the partition function of an impurity model using diagrammatic Monte Carlo techniques. The present paper describes codes that implement the interaction expansion algorithm originally developed by Rubtsov, Savkin, and Lichtenstein, as well as the hybridization expansion method developed by Werner, Millis, Troyer, et al. These impurity solvers are part of the ALPS-DMFT application package and are accompanied by an implementation of dynamical mean-field self-consistency equations for (single orbital single site) dynamical mean-field problems with arbitrary densities of states.

MSC:

81V70 Many-body theory; quantum Hall effect
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
81V45 Atomic physics
81T25 Quantum field theory on lattices
81T80 Simulation and numerical modelling (quantum field theory) (MSC2010)
65C05 Monte Carlo methods
82D20 Statistical mechanics of solids

Software:

dmft
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Albuquerque, A.; Alet, F.; Corboz, P., J. magn. magn. mater., 310, 1187, (2007)
[2] Georges, A.; Kotliar, G.; Krauth, W.; Rozenberg, M.J., Rev. mod. phys., 68, 13, (1996)
[3] Pruschke, T.; Jarrell, M.; Freericks, J.K., Adv. phys., 44, 187, (1995)
[4] Maier, T.; Jarrell, M.; Pruschke, T.; Hettler, M.H., Rev. mod. phys., 77, 1027, (2005)
[5] Rubtsov, A.N.; Katsnelson, M.I.; Lichtenstein, A.I., Phys. rev. B, 77, 033101, (2008)
[6] Kotliar, G.; Savrasov, S.Y.; Haule, K., Rev. mod. phys., 78, 865, (2006)
[7] Georges, A.; Krauth, W., Phys. rev. lett., 69, 1240, (1992)
[8] Keiter, H.; Kimball, J.C., Phys. rev. lett., 25, 10, 672, (1970)
[9] Pruschke, T.; Grewe, N., Z. phys. B, 74, 439, (1989)
[10] Bulla, R.; Costi, T.A.; Pruschke, T., Rev. mod. phys., 80, 395, (2008)
[11] Hirsch, J.E.; Fye, R.M., Phys. rev. lett., 56, 2521, (1986)
[12] Rubtsov, A.N.; Lichtenstein, A.I., JETP lett., 80, 61, (2004)
[13] Rubtsov, A.N.; Savkin, V.V.; Lichtenstein, A.I., Phys. rev. B, 72, 035122, (2005)
[14] Werner, P.; Comanac, A.; de’ Medici, L., Phys. rev. lett., 97, 076405, (2006)
[15] Werner, P.; Millis, A.J., Phys. rev. B, 74, 155107, (2006)
[16] Haule, K., Phys. rev. B, 75, 155113, (2007)
[17] Gull, E.; Werner, P.; Parcollet, O.; Troyer, M., Europhys. lett., 82, 57003, (2008), (6 pp)
[18] Gull, E.; Reichman, D.R.; Millis, A.J., Phys. rev. B, 82, 075109, (2010)
[19] Luitz, D.J.; Assaad, F.F., Phys. rev. B, 81, 024509, (2010)
[20] Prokof’ev, N.V.; Svistunov, B.V., Phys. rev. lett., 81, 2514, (1998)
[21] Prokof’ev, N.V.; Svistunov, B.V.; Tupitsyn, I.S., JETP sov. phys., 87, 310, (1998)
[22] Rombouts, S.M.A.; Heyde, K.; Jachowicz, N., Phys. rev. lett., 82, 4155, (1999)
[23] Gull, E.; Werner, P.; Millis, A.; Troyer, M., Phys. rev. B, 76, 235123, (2007)
[24] Assaad, F.F.; Lang, T.C., Phys. rev. B, 76, 035116, (2007)
[25] Werner, P.; Millis, A.J., Phys. rev. lett., 99, 146404, (2007)
[26] Gull, E.; Werner, P.; Wang, X.; Troyer, M.; Millis, A.J., Europhys. lett., 84, 37009, (2008), (6 pp)
[27] Werner, P.; Gull, E.; Parcollet, O.; Millis, A.J., Phys. rev. B, 80, 045120, (2009)
[28] Gull, E.; Parcollet, O.; Werner, P.; Millis, A.J., Phys. rev. B, 80, 245102, (2009)
[29] Metzner, W.; Vollhardt, D., Phys. rev. lett., 62, 324, (1989)
[30] Müller-Hartmann, E., Z. phys. B condens. matter, 74, 507, (1989)
[31] Kozik, E.; Houcke, K.V.; Gull, E.; Pollet, L.; Prokof’ev, N.; Svistunov, B.; Troyer, M., Europhys. lett., 90, 10004, (2010)
[32] Bethe, H., Proc. roy. soc. London ser. A math. phys. sci., 150, 552, (1935)
[33] Alet, F., J. phys. soc. jpn., 74S, Suppl., 30, (2005)
[34] Troyer, M.; Ammon, B.; Heeb, E., Lect. notes comput. sci., 191, 1505, (1998)
[35] Caffarel, M.; Krauth, W., Phys. rev. lett., 72, 1545, (1994)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.