×

zbMATH — the first resource for mathematics

Gibbs2: A new version of the quasiharmonic model code. II. Models for solid-state thermodynamics, features and implementation. (English) Zbl 1221.82004
Summary: In the second article of the series, we present the Gibbs2 code, a Fortran90 reimplementation of the original Gibbs program [M. A. Blanco, E. Francisco and V. Luaña, Comput. Phys. Commun. 158, No. 1, 57–72 (2004; Zbl 1221.82001)] for the calculation of pressure-temperature dependent thermodynamic properties of solids under the quasiharmonic approximation. We have taken advantage of the detailed analysis carried out in the first paper to implement robust fitting techniques. In addition, new models to introduce temperature effects have been incorporated, from the simple Debye model contained in the original article to a full quasiharmonic model that requires the phonon density of states at each calculated volume. Other interesting novel features include the empirical energy corrections, that rectify systematic errors in the calculation of equilibrium volumes caused by the choice of the exchange-correlation functional, the electronic contributions to the free energy and the automatic computation of phase diagrams. Full documentation in the form of a user’s guide and a complete set of tests and sample data are provided along with the source code.

MSC:
82-04 Software, source code, etc. for problems pertaining to statistical mechanics
82B30 Statistical thermodynamics
82C35 Irreversible thermodynamics, including Onsager-Machlup theory
82D20 Statistical mechanical studies of solids
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Wentzcovitch, R.M.; Yu, Y.G.; Wu, Z., Thermodynamic properties and phase relations in mantle minerals investigated by first principles quasiharmonic theory, (), 59-98
[2] Errandonea, D.; Ferrer-Roca, C.; Martínez-García, D.; Segura, A.; Gomis, O.; Muñoz, A.; Rodríguez-Hernández, P.; López-Solano, J.; Alconchel, S.; Sapina, F., High-pressure x-ray diffraction and ab initio study of ni2mo3N, pd2mo3N, pt2mo3N, co3mo3N, and fe3mo3N: two families of ultra-incompressible bimetallic interstitial nitrides, Phys. rev. B, 82, 174105, (2010)
[3] Alling, B.; Isaev, E.I.; Flink, A.; Hultman, L.; Abrikosov, I.A., Metastability of fcc-related si-N phases, Phys. rev. B, 78, 132103, (2008)
[4] Porezag, D.; Pederson, M.R.; Liu, A.Y., Importance of nonlinear core corrections for density-functional based pseudopotential calculations, Phys. rev. B, 60, 14132-14139, (1999)
[5] Marx, D.; Hutter, J., Ab initio molecular dynamics: basic theory and advanced methods, (2009), Cambridge University Press
[6] Allen, M.; Tildesley, D., Computer simulation of liquids, (1989), Clarendon Press · Zbl 0703.68099
[7] Born, M.; Huang, K., Dynamical theory of crystal lattices, (1988), Oxford University Press USA · Zbl 0908.01039
[8] Baroni, S.; de Gironcoli, S.; Dal Corso, A.; Giannozzi, P., Phonons and related crystal properties from density-functional perturbation theory, Rev. mod. phys., 73, 515-562, (2001)
[9] Karki, B.B.; Wentzcovitch, R.M.; De Gironcoli, S.; Baroni, S., First-principles determination of elastic anisotropy and wave velocities of mgo at lower mantle conditions, Science, 286, 1705, (1999)
[10] Wu, Z.Q.; Wentzcovitch, R.M.; Umemoto, K.; Li, B.S.; Hirose, K.; Zheng, J.C., Pressure-volume-temperature relations in mgo: an ultrahigh pressure-temperature scale for planetary sciences applications, J. geophys. res., 113, B06204, (2008)
[11] Blanco, M.A.; Francisco, E.; Luaña, V., GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model, Comput. phys. commun., 158, 57-72, (2004), source code distributed by the CPC program library: · Zbl 1221.82001
[12] M. Álvarez Blanco, Métodos cuánticos locales para la simulación de materiales iónicos. Fundamentos, algoritmos y aplicaciones, Tesis doctoral, Universidad de Oviedo, Julio 1997.
[13] Otero-de-la Roza, A.; Luaña, V., \scgibbs2: A new version of the quasi-harmonic model code. I. robust treatment of the static data, Comput. phys. commun., 182, 8, 1708-1720, (2011) · Zbl 1451.74006
[14] Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G.L.; Cococcioni, M.; Dabo, I.; Dal Corso, A.; de Gironcoli, S.; Fabris, S.; Fratesi, G.; Gebauer, R.; Gerstmann, U.; Gougoussis, C.; Kokalj, A.; Lazzeri, M.; Martin-Samos, L.; Marzari, N.; Mauri, F.; Mazzarello, R.; Paolini, S.; Pasquarello, A.; Paulatto, L.; Sbraccia, C.; Scandolo, S.; Sclauzero, G.; Seitsonen, A.P.; Smogunov, A.; Umari, P.; Wentzcovitch, R.M., QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, J. phys. condens. matter, 21, 395502, (2009)
[15] Vanderbilt, D., Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. rev. B, 41, 7892-7895, (1990)
[16] Carrier, P.; Wentzcovitch, R.; Tsuchiya, J., First-principles prediction of crystal structures at high temperatures using the quasiharmonic approximation, Phys. rev. B, 76, 64116, (2007)
[17] Ashcroft, N.W.; Mermin, N.D., Solid state physics, (1976), Thomson Learning Inc. · Zbl 1118.82001
[18] Chen, X.-J.; Zhang, C.; Meng, Y.; Zhang, R.-Q.; Lin, H.-Q.; Struzhkin, V.V.; Mao, H.-K., \(\beta \text{-tin} \rightarrow \text{Imma} \rightarrow \operatorname{sh}\) phase transitions of germanium, Phys. rev. lett., 106, 135502, (2011)
[19] Umemoto, K.; Wentzcovitch, R.M.; Saito, S.; Miyake, T., Body-centered tetragonal C-4: a viable sp(3) carbon allotrope, Phys. rev. lett., 104, 125504, (2010)
[20] Wood, B.C.; Marzari, N., Dynamics and thermodynamics of a novel phase of naalh4, Phys. rev. lett., 103, 185901, (2009)
[21] Oganov, A.R.; Chen, J.; Gatti, C.; Ma, Y.; Ma, Y.; Glass, C.W.; Liu, Z.; Yu, T.; Kurakevych, O.O.; Solozhenko, V.L., Ionic high-pressure form of elemental boron, Nature, 457, 863-867, (2009)
[22] Chen, X.-R.; Zeng, Z.-Y.; Liu, Z.-L.; Cai, L.-C.; Jing, F.-Q., Elastic anisotropy of epsilon-fe under conditions at the earthʼs inner core, Phys. rev. B, 83, 132102, (2011)
[23] Deng, L.; Liu, X.; Liu, H.; Dong, J., High-pressure phase relations in the composition of albite naalsi_3O8 constrained by an ab initio and quasi-harmonic Debye model, and their implications, Earth planet. sci. lett., 298, 427-433, (2010)
[24] Errandonea, D.; Kumar, R.S.; Gracia, L.; Beltran, A.; Achary, S.N.; Tyagi, A.K., Experimental and theoretical investigation of thgeo4 at high pressure, Phys. rev. B, 80, 094101, (2009)
[25] Debye, P., Concerning the theory of specific heat, Ann. phys., 39, 789-839, (1912)
[26] Slater, J., Introduction to chemical physics, (1939), McGraw-Hill
[27] Poirier, J., Introduction to the physics of the earthʼs interior, (2000), Cambridge University Press
[28] Vocadlo, L.; Poirer, J.; Price, G., Gruneisen parameters and isothermal equations of state, Am. mineralog., 85, 390, (2000)
[29] Moruzzi, V.L.; Janak, J.F.; Schwarz, K., Calculated thermal properties of metals, Phys. rev. B, 37, 790-799, (1988)
[30] Kieffer, S.W., Thermodynamics and lattice vibrations of minerals: 3. lattice dynamics and an approximation for minerals with application to simple substances and framework silicates, Rev. geophys., 17, 35-59, (1979)
[31] Fleche, J.L., Thermodynamical functions for crystals with large unit cells such as zircon, cofinite, fluorapatite, and iodoapatite from ab initio calculations, Phys. rev. B, 65, 245116, (2002)
[32] Speziale, S.; Zha, C.S.; Duffy, T.S.; Hemley, R.J.; Mao, H.K., Quasi-hydrostatic compression of magnesium oxide to 52 gpa: implications for the pressure-volume-temperature equation of state, J. geophys. res., 106, 515-528, (2001)
[33] Li, B.; Woody, K.; Kung, J., Elasticity of mgo to 11 gpa with an independent absolute pressure scale: implications for pressure calibration, J. geophys. res., 111, B11206, (2006)
[34] Tange, Y.; Nishihara, Y.; Tsuchiya, T., Unified analyses for PVT equation of state of mgo: A solution for pressure-scale problems in high PT experiments, J. geophys. res., 114, B03208, (2009)
[35] Fiquet, G.; Andrault, D.; Iti, J.P.; Gillet, P.; Richet, P., X-ray diffraction of periclase in a laser-heated diamond-anvil cell, Phys. Earth planet. int., 95, 1-17, (1996)
[36] Sinogeikin, S.V.; Jackson, J.M.; OʼNeill, B.; Palko, J.W.; Bass, J.D., Compact high-temperature cell for Brillouin scattering measurements, Rev. sci. instrum., 71, 201-206, (2000)
[37] Dubrovinsky, L.S.; Saxena, S.K., Thermal expansion of periclase (mgo) and tungsten (W) to melting temperatures, Phys. chem. minerals, 24, 547-550, (1997)
[38] Anderson, O.; Zou, K., Thermodynamic functions and properties of mgo at high compression and high temperature, J. phys. chem. ref. data, 19, 69-83, (1990)
[39] Mermin, N.D., Thermal properties of the inhomogeneous electron gas, Phys. rev., 137, A1441-A1443, (1965)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.