zbMATH — the first resource for mathematics

L’irrégularité des surfaces de type général dont le système canonique est composé d’un pinceau. (The irregularity of surfaces et general type whose canonical system is composed of a pencil). (English) Zbl 0594.14029
Let S be a surface of general type over \({\mathbb{C}}\). Suppose that the canonical system \(| K_ S|\) is composed of a pencil. Then up to birational equivalence, there is a fibration \(f: S\to B\) onto a smooth curve B of genus b such that the general fibre is a curve of genus \(\geq 2\). It turns out that such a surface is rather restrictive. Namely, the present paper proves that either \(q(S)=b=1\) or \(b=0,q(S)\leq 2,\) where \(q(S)=\dim H^ 1(S,{\mathcal O}_ S)\). The proof consists of two parts. In the first part it is shown that if \(b>0\), then \(q=b=1\), which considerably improves the earlier result: \(q\leq b+1\), given by O. Debarre [Bull. Soc. Math. Soc. Fr. 110, No.3, 319-346 (1982; Zbl 0543.14026)]. The proof is based on a result of T. Fujita [J. Math. Soc. Japan 30, 779-794 (1978; Zbl 0393.14006)], which tells the positivity in a certain sense of the sheaf \(f_*\omega_{S/B}.\)
In the second part it is first shown by using a result of Castelnuovo that the image of S of the Albanese mapping is a curve. Then a detailed analysis of the two fibrations gives the bound: \(q\leq 2\).
Reviewer: F.Sakai

14J10 Families, moduli, classification: algebraic theory
14J25 Special surfaces
14C20 Divisors, linear systems, invertible sheaves
Full Text: Numdam EuDML
[1] A. Beauville : L’inégalité pg \? 2q - 4 pour les surfaces de type général. Appendice à O. Debarre: ”Inégalités numériques pour les surfaces de type général” . Bull. Soc. Math. France 110 (1982) 319-346. · Zbl 0543.14026
[2] E. Bombieri : Canonical models of surfaces of general type , Publ. Math. IHES 42 (1973) 171-219. · Zbl 0259.14005
[3] G. Xiao : Finitude de l’application bicanonique des surfaces de type général , à paraître. · Zbl 0611.14031
[4] A. Beauville : L’application canonique pour les surfaces de type général , Inv. Math. 55 (1979) 121-140. · Zbl 0403.14006
[5] T. Fujita : On Kähler fiber spaces over curves , J. Math. Soc. Japan 30 (1978) 779-794. · Zbl 0393.14006
[6] A. Beauville : Surfaces Algébriques Complexes , Astérisque 54, SMF (1978). · Zbl 0394.14014
[7] U. Persson : Double coverings and surfaces of general type . In: Algebraic Geometry , Springer Lecture Notes in Math. 687 (1978). · Zbl 0396.14003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.