Filippov, V. T. \(n\)-Lie algebras. (English) Zbl 0594.17002 Sib. Math. J. 26, 879-891 (1985). Translation from Sib. Mat. Zh. 26, No. 6(154), 126–140 (Russian) (1985; Zbl 0585.17002). Cited in 5 ReviewsCited in 53 Documents MSC: 17A42 Other \(n\)-ary compositions \((n \ge 3)\) 17A36 Automorphisms, derivations, other operators (nonassociative rings and algebras) 17A65 Radical theory (nonassociative rings and algebras) 17B60 Lie (super)algebras associated with other structures (associative, Jordan, etc.) Keywords:linear omega-algebras; n-ary multilinear operation; prime; characteristic not two; inner derivations; n-Lie algebra; anticommutative; n-ary operation; polynomial algebra; radicals; characteristic zero; non-solvable n-Lie algebras Citations:Zbl 0585.17002 PDF BibTeX XML Cite \textit{V. T. Filippov}, Sib. Math. J. 26, 879--891 (1985; Zbl 0594.17002) Full Text: DOI References: [1] A. G. Kurosh, ?Free sums of multioperator algebras,? Sib. Mat. Zh., No. 1, 62-70 (1960). · Zbl 0096.25304 [2] A. G. Kurosh, ?Multioperator rings and algebras,? Usp. Mat. Nauk,24, No. 1, 3-15 (1969). · Zbl 0204.35701 [3] T. M. Baranovich and M. S. Burgin, ?Linear ?-algebras,? Usp. Mat. Nauk,30, No. 4, 61-106 (1975). [4] B. A. Rozenfel’d, Spaces of Higher Dimensions [in Russian], Nauka, Moscow (1966). [5] N. V. Efimov and E. R. Rozenforn, Linear Algebra and Multidimensional Geometry [in Russian], Nauka, Moscow (1974). [6] A. G. Kurosh, Lectures in General Algebra [in Russian], Nauka, Moscow (1973). · Zbl 0271.08001 [7] N. Jacobson, Lie Algebras [Russian translation], Mir, Moscow (1969). · Zbl 0253.17013 [8] M. Goto and F. Grosshans, Semisimple Lie Algebras [Russian translation], Mir, Moscow (1981). · Zbl 0528.17001 [9] V. T. Filippov, ?On one generalization of Lie algebras,? Preprint No. 64, Mathematics Inst., Siberian Branch, Acad. Sci. of the USSR, Novosibirsk (1984). This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.