×

Equidistant Kähler spaces. (English. Russian original) Zbl 0594.53024

Math. Notes 38, 855-858 (1985); translation from Mat. Zametki 38, 627-633 (1985).
The author determines the general form of the metric tensor of equidistant Kähler spaces of basic type in some coordinate system (i.e., he describes all of these spaces locally). Consequences for nontrivial geodesic and holomorphically projective maps of Kähler spaces follow.
Reviewer: J.Szilasi

MSC:

53B35 Local differential geometry of Hermitian and Kählerian structures
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] K. Jano, Differential Geometry of Complex and Almost Complex Spaces, Pergamon Press, New York (1965).
[2] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Interscience, New York-London (1963). · Zbl 0119.37502
[3] N. S. Sinyukov, Geodesic Maps of Riemannian Spaces [in Russian], Nauka, Moscow (1979). · Zbl 0637.53020
[4] J. Otsuki and J. Tashiro, ?On curves in Kählerian spaces,? Math. J. Okayama Univ.,4 No. 1, 57-78 (1954). · Zbl 0057.14101
[5] N. S. Sinyukov, ?Equidistant Riemannian spaces,? Nauchnyi Ezhegodnik Odessk. Univ. 133-135 (1957).
[6] Y. Muto, ?On some special Kählerian spaces,? Sci. Repts. Yokohama Mat. Univ.,1, No. 8, 1-8 (1961). · Zbl 0104.03001
[7] K. Jano, ?Sur la correspondence projectif entre deux espaces pseudohermitiens,? C. R. Acad. Sci., Paris,239, 1346-1348 (1956).
[8] W. J. Westlake, ?Hermitian spaces in geodesic correspondence,? Proc. Am. Math. Soc.,5, No. 2, 301-303 (1954). · Zbl 0055.40304
[9] Mitsuru Kora, ?On projective diffeomorphisms not necessarily preserving complex structure,? Math. J. Ohayama Univ.,19, No. 2, 183-191 (1977). · Zbl 0375.53025
[10] I. Mikesh, ?Geodesic maps of 2-symmetric Riemannian spaces,? Mat. Zametki,28, No. 2, 313-317 (1980).
[11] V. V. Domashev and I. K. Mikesh, ?Holomorphically projective maps of Kahler spaces,? Mat. Zametki,23, No. 2, 297-304 (1978).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.