Lo, Shaw-Hwa Estimation of a symmetric distribution. (English) Zbl 0594.62015 Ann. Stat. 13, 1097-1113 (1985). The main result of this paper establishes the fact, that for a sequence \(X_ 1,...,X_ n\) of i.i.d. random variables with d.f. \(F(x)=F_ 0(x- \theta)\), \(F_ 0\) being symmetric at zero, the empirical d.f. symmetrized at some appropriate estimate of \(\theta\) is asymptotically minimax-efficient for F. Reviewer: W.Stute Cited in 1 Document MSC: 62E20 Asymptotic distribution theory in statistics 62G20 Asymptotic properties of nonparametric inference 62G30 Order statistics; empirical distribution functions Keywords:empirical distribution function; symmetric distribution functions; Gaussian experiments; asymptotically minimax estimators; location PDF BibTeX XML Cite \textit{S.-H. Lo}, Ann. Stat. 13, 1097--1113 (1985; Zbl 0594.62015) Full Text: DOI OpenURL