Mesures de Monge-Ampère et mesures pluriharmoniques. (Monge-Ampère measures and pluriharmonic measures). (French) Zbl 0595.32006

Let \(\Omega\) be a relatively compact open subset in a Stein manifold, and \(n=\dim_{{\mathbb{C}}}\Omega\). Assume that \(\Omega\) is hyperconvex, i.e. that there exists a bounded psh (plurisubharmonic) exhaustion function on \(\Omega\). A ”pluricomplex Green function” \(u_{\Omega}\) is then naturally defined on \(\Omega \times \Omega:\) For all \(z\in \Omega\), \(u_ z(\zeta):= u_{\Omega}(z,\zeta)\) is the solution of the Dirichlet problem for the complex Monge-Ampère equation \((dd^ cu_ z)^ n=0\) on \(\Omega\) \(\setminus \{z\}\) such that \(u_ z(\zeta)=\log | \zeta - z| +O(1)\) at \(\zeta =z\); \(u_{\Omega}\) is shown to be continuous outside the diagonal and invariant under biholomorphisms. Bedford and Taylor’s Monge-Ampère operators are used in conjunction with a general Lelong-Jensen formula previously found by the author [Mem. Soc. Math. Fr., Nouv. Ser. 19, 124 p. (1985; Zbl 0579.32012)] in order to construct an invariant pluricomplex Poisson kernel \(d\mu_ z(\zeta):= (2\pi)^{- n}(dd^ cu_ z(\zeta))^{n-1}\wedge d^ cu_ z(\zeta)|_{\partial \Omega},\) \((z,\zeta)\in \Omega \times \partial \Omega\). Each measure \(\mu_ z\) on \(\partial \Omega\) is such that \(\mu_ z(V)=V(z)\) for every function V pluriharmonic on \(\Omega\) and continuous on \({\bar \Omega}\); furthermore, \(\mu_ z\) is carried by the set of strictly pseudoconvex points of \(\partial \Omega\) if \({\bar \Omega}\) has a \(C^ 2\) psh defining function. The principal part of the singularity of \(d\mu_ z(\zeta)\) on the diagonal of \(\partial \Omega\) is then computed explicitly when \(\Omega\) is strictly pseudoconvex, using an osculation of \(\partial \Omega\) by balls. Through a complexification process, it is finally shown that Monge-Ampère measures provide an explicit formula representing every point of a convex compact subset \(K\subset {\mathbb{R}}^ n\) as a barycenter of the extremal points of K.


32A25 Integral representations; canonical kernels (Szegő, Bergman, etc.)
32C30 Integration on analytic sets and spaces, currents
32F45 Invariant metrics and pseudodistances in several complex variables
32U05 Plurisubharmonic functions and generalizations
31C10 Pluriharmonic and plurisubharmonic functions
32E10 Stein spaces


Zbl 0579.32012
Full Text: DOI EuDML


[1] Bedford, E., Taylor, B.A.: The Dirichlet problem for the complex Monge-Amp?re equation. Invent. Math.37, 1-44 (1976) · Zbl 0325.31013
[2] Bedford, E., Taylor, B.A.: A new capacity for plurisubharmonic functions. Acta Math.,149 1-41 (1982) · Zbl 0547.32012
[3] Choquet, G.: Existence et unicit? des repr?sentations int?grales au moyen des points extr?maux dans les c?nes convexes. S?m. Bourbaki, expos? no 139, 15 p. (D?c. 1956)
[4] Demailly, J.-P.: Mesures de Monge-Amp?re et caract?risation g?om?trique des vari?t?s alg?briques affines, m?moire (nouvelle s?rie) no 19, Soc. Math. de France, 1985
[5] Diederich, K., Fornaess, J.E.: Pseudoconvex domains: bounded strictly plurisubharmonic functions. Invent. Math.39, 129-141 (1977) · Zbl 0353.32025
[6] Fornaess, J.E.: Embedding strictly pseudoconvex domains in convex domains. Am. J. Math.98, 529-569 (1976) · Zbl 0334.32020
[7] Gamelin, T.W., Sibony, N.: Subharmonicity for uniform algebras. J. Funct. Anal.35, 64-108 (1980) · Zbl 0422.46043
[8] Kerzman, N., Rosay, J.-P.: Fonctions plurisousharmoniques d’exhaustion born?es et domaines taut. Math. Ann.257, 171-184 (1981) · Zbl 0461.32006
[9] Klimek, M.: Extremal plurisubharmonic functions and invariant pseudodistances. Bull. Soc. Math. France113, 123-142 (1985) · Zbl 0584.32037
[10] Lelong, P.: Fonctionnelles analytiques et fonctions enti?res (n variables). Presses de l’Univ. de Montr?al, S?m. de Math. Sup?rieures, ?t? 1967, no 28, Montr?al, 1968
[11] Lempert, L.: La m?trique de Kobayashi et la repr?sentation des domaines sur la boule. Bull. Soc. Math. France109, 427-474 (1981) · Zbl 0492.32025
[12] Lempert, L.: Solving the degenerate Monge-Amp?re equation with one concentrated singularity. Math. Ann.263, 515-532 (1983) · Zbl 0531.35020
[13] Phelps, R.: Lectures on Choquet’s theorem. Van Nostrand Math. Studies no 7, Princeton, New Jersey, 1966 · Zbl 0135.36203
[14] Richberg, R.: Stetige streng pseudokonvexe Funktionen. Math. Ann.175, 257-286 (1968) · Zbl 0153.15401
[15] Rudin, W.: Function theory in the unit ball of Cn. Grundlehren der math. Wissenschaften 241. Berlin Heidelberg New York: Springer 1980
[16] Sibony, N.: Remarks on the Kobayashi metric, manuscrit, communication personnelle (juin 1986)
[17] Siciak, J.: On some extremal functions and their applications in the theory of analytic functions of several complex variables. Trans. Am. Math. Soc.105, 322-357 (1962) · Zbl 0111.08102
[18] Siciak, J.: Extremal plurisubharmonic functions in Cn. Ann. Pol. Math.39, 175-211 (1981) · Zbl 0477.32018
[19] Siciak, J.: Extremal plurisubharmonic functions and capacities in Cn. Sophia Kokyuroku in Math., Tokyo, 1982 · Zbl 0579.32025
[20] Stehl?, J.-L.: Fonctions plurisousharmoniques et convexit? holomorphe de certains espaces fibr?s analytiques. S?m. P. Lelong (Analyse) 1973/74, Lecture Notes in Math. no 474, 155-179 Berlin Heidelberg New York: Springer 1975
[21] Taylor, B.A.: An estimate for an extremal plurisubharmonic function on Cn, S?m. P. Lelong, P. Dolbeault, H. Skoda (Analyse) 1982/83, Lecture Notes in Math. no 1028 318-328. Berlin Heidelberg New York: Springer 1983
[22] Walsh, J.B.: Continuity of envelopes of plurisubharmonic functions. J. Math. Mech.18, 143-148 (1968) · Zbl 0159.16002
[23] Zeriahi, A.: Fonctions plurisousharmoniques extr?males, approximation et croissance des fonctions holomorphes sur des ensembles alg?briques. Th?se de Doctorat-?s-Sciences, Univ. de Toulouse, 1986
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.