Giga, Yoshikazu A bound for global solutions of semilinear heat equations. (English) Zbl 0595.35057 Commun. Math. Phys. 103, 415-421 (1986). The author proves that every global (classical) solution of equation \(u_ t=\Delta u+u^ p\) in a bounded domain in \(R^ n\) is bounded by a constant depending only on the sup-norm of the initial data if \(n/2<(p+1)/(p-1).\) Reviewer: B.Nowak Cited in 1 ReviewCited in 77 Documents MSC: 35K55 Nonlinear parabolic equations 35K25 Higher-order parabolic equations 35B35 Stability in context of PDEs 35K15 Initial value problems for second-order parabolic equations Keywords:global solutions; semilinear heat equations; initial-boundary; value problem; Dirichlet boundary condition × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Cazenave, T., Lions, P. L.: Solutions globales d’équation de la chaleur semilinéaires. Commun. Partial Differ. Equations9, 955-978 (1984) · Zbl 0555.35067 · doi:10.1080/03605308408820353 [2] Gidas, B. and Spruck, J.: A priori bounds for positive solutions of nonlinear elliptic equations. Commun. Partial Differ. Equations6, 883-901 (1981) · Zbl 0462.35041 · doi:10.1080/03605308108820196 [3] Ladyzhenskaya, O. A., Solonnikov, V. A. Ural’ceva, N. N.: Linear and quasilinear equations of parabolic types. Transl. Math. Monogr. vol.23, Providence, R.I.: Am. Math. Soc. 1968 [4] Lions, P. L.: Asymptotic behavior of some nonlinear heat equations. Nonlinear phenomena. Physica5D. 293-306 (1982) · Zbl 1194.35459 · doi:10.1016/0167-2789(82)90024-0 [5] Ni, W. M., Sacks, P. E., Tavantzis, J.: On the asymptotic behavior of solutions of certain quasilinear equation of parabolic type. J. Differ. Equations54, 97-120 (1984) · Zbl 0565.35053 · doi:10.1016/0022-0396(84)90145-1 [6] Weissler, F.:L p -energy and blow-up for a semilinear heat equation, Proc. AMS Summer Inst. 1983 (to appear) [7] Weissler, F.: Local existence and nonexistence for semilinear parabolic equations inL p . Indiana Univ. Math. J.29, 79-102 (1980) · Zbl 0443.35034 · doi:10.1512/iumj.1980.29.29007 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.