King, Jonathan The commutant is the weak closure of the powers, for rank-1 transformations. (English) Zbl 0595.47005 Ergodic Theory Dyn. Syst. 6, 363-384 (1986). See the preview in Zbl 0581.47003. Cited in 5 ReviewsCited in 28 Documents MSC: 47A35 Ergodic theory of linear operators 47D03 Groups and semigroups of linear operators 28D05 Measure-preserving transformations Keywords:rank-1 transformations; commutant semigroup; weak isomorphism; between two transformations; any proper factor of a rank-1 must be; rigid PDF BibTeX XML Cite \textit{J. King}, Ergodic Theory Dyn. Syst. 6, 363--384 (1986; Zbl 0595.47005) Full Text: DOI References: [1] DOI: 10.1007/BF02761532 · Zbl 0264.54030 · doi:10.1007/BF02761532 [2] DOI: 10.1007/BF01692494 · Zbl 0146.28502 · doi:10.1007/BF01692494 [3] Friedman, J. Math. Mech. 20 pp 767– (1971) [4] DOI: 10.2307/2037424 · Zbl 0197.04001 · doi:10.2307/2037424 [5] del Junco, Can. J. Math. 28 pp 836– (1976) · Zbl 0312.47003 · doi:10.4153/CJM-1976-080-3 [6] Rudolph, J. d’Analyse Math. 35 pp 97– (1979) [7] DOI: 10.1007/BF01223133 · Zbl 0399.28011 · doi:10.1007/BF01223133 [8] del Junco, J. Analyse Math. 37 pp 276– (1980) [9] Ornstein, Proc. Sixth Berkeley Symp. Math. Slat. Prob. Vol II pp 347– (1967) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.