zbMATH — the first resource for mathematics

Null-controllability of nonlinear infinite delay systems with restrained controls. (English) Zbl 0595.93007
For nonlinear infinite delay systems \[ \dot x(t)=L(t,x_ t)+B(t)u(t)+f(t,x(\cdot),u(\cdot))+\int^{0}_{- \infty}A(\theta)x(t\quad +\theta)d\theta, \] \[ x(t)=\psi (t),\quad t\in]-\infty,0] \] sufficient conditions for null-controllability are obtained. Here L(t,\(\psi)\) is continuous in t, linear in \(\psi\) and \(L(t,\psi)=\sum^{1}_{k=0}A_ k\psi (-t_ k)\), where B(t) is a continuous matrix function, A(\(\theta)\) is an \(n\times n\) matrix whose elements are Lebesgue integrable on \(]-\infty,0]\); \(f: I\times B\times L_ 2\to E^ n\) is a continuous function and the control \(u(t)\in \{u| u\in E^ m\), \(| u_ j| \leq 1\), \(j=1,...,m\}\) is a square-integrable function.
Reviewer: T.Tadumadze

93B05 Controllability
34K35 Control problems for functional-differential equations
93C10 Nonlinear systems in control theory
93B03 Attainable sets, reachability
93C30 Control/observation systems governed by functional relations other than differential equations (such as hybrid and switching systems)
93C99 Model systems in control theory
93D20 Asymptotic stability in control theory
Full Text: DOI
[1] CHUKWU E. N., J. math. Anal. Applic 76 pp 283– (1980) · Zbl 0446.93015 · doi:10.1016/0022-247X(80)90078-5
[2] DAUER J. P., J. optim. Theory Applic 14 pp 251– (1974) · Zbl 0268.93005 · doi:10.1007/BF00932609
[3] DAUER J. P., J. optim. Theory Applic 21 pp 59– (1977) · Zbl 0325.93007 · doi:10.1007/BF00932544
[4] DELFOUR M. C., J. diff. Eqns 12 pp 213– (1972) · Zbl 0242.34055 · doi:10.1016/0022-0396(72)90030-7
[5] HALE J. K., Int. Conf. on Differential Equations pp 330– (1974)
[6] HERMES H., Functional Analysis and Time Optimal Control (1969) · Zbl 0203.47504
[7] KANTOROVICH L. V., Functional Analysis in Normed Spaces (1974) · Zbl 0127.06102
[8] SINHA A. S. C., I.E.E.E. Trans, autom. Control 25 pp 1234– (1980) · Zbl 0483.93019 · doi:10.1109/TAC.1980.1102522
[9] ZMOOD R. B., SI AM J. Control 12 pp 609– (1974) · Zbl 0296.93005 · doi:10.1137/0312045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.