zbMATH — the first resource for mathematics

Quasilinear parabolic systems under nonlinear boundary conditions. (English) Zbl 0596.35061
The author proves existence and regularity results for abstract quasilinear parabolic systems of the form \[ (*)\quad \partial u/\partial t+A(t,u)u=f(t,u),\quad B(t,u)u=g(t,u),\quad u(s)=u_ 0\quad for\quad s<t\leq T. \] An important example for which his results are applicable is the case of elliptic operators \[ A(t,u)u:=-D_ j(a_{jk}(\cdot,t,u)D_ ku)+a_ j(\cdot,t,u)D_ ju. \] A great variety of problems in applications lead to a system of the form (*). The wide range of applications of the author’s results emphasize the importance of this paper.
Reviewer: R.Sperb

35G10 Initial value problems for linear higher-order PDEs
35K25 Higher-order parabolic equations
35B30 Dependence of solutions to PDEs on initial and/or boundary data and/or on parameters of PDEs
35R15 PDEs on infinite-dimensional (e.g., function) spaces (= PDEs in infinitely many variables)
Full Text: DOI
[1] Agmon, S., A. Douglis, &amp; L. Nirenberg: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II · Zbl 0123.28706
[2] Alt, W.: Vergleichssätze für quasilineare elliptisch-parabolische Systeme partieller Differentialgleichungen. Habilitationsschrift, Universität Heidelberg, 1980.
[3] Amann, H.: Gewöhnliche Differentialgleichungen. W. de Gruyter, Berlin, 1983.
[4] Amann, H.: Dual semigroups and second order linear elliptic boundary value p · Zbl 0535.35017
[5] Amann, H.: Existence and regularity for semilinear parabolic evolution equations. Annali Scuola Norm. Sup. Pisa. (4) 11 (1984), 593–676. · Zbl 0625.35045
[6] Amann, H.: Global existence for semilinear parabolic system · Zbl 0564.35060
[7] Amann, H.: Quasilinear evolution equations and parabolic systems. Trans. Amer. Math. Soc. in press. · Zbl 0635.47056
[8] Amann, H.: On abstract parabolic fundamental solutions. J. Math. Soc. Japan (in press). · Zbl 0616.47032
[9] Bergh, J., &amp; J. Löfström: Interpolation Spaces. An Introduction. Springer-Verlag, Berlin Heidelberg New York, 1976.
[10] De Groot, S. R., &amp; P. Mazur: Non-Equilibrium Thermodynamics. North-Holland, Amsterdam 1962. · Zbl 1375.82003
[11] Giaquinta, M., &amp; M. Struwe: An optimal regularity result for a class of quasilinear parabolic sy · Zbl 0475.35026
[12] Giaquinta, M., &amp; M. Struwe: On the partial regularity of weak solutions of nonlinear par · Zbl 0469.35028
[13] Hurle, D. T. J., &amp; E. Jakeman: Soret-driven thermosolutial convection. J. Fluid Mech. 47 (1971), 667–687.
[14] Kato, T.: Remarks on pseudo-resolvents and infinitesimal generators of semig · Zbl 0095.10502
[15] Kato, T., &amp; H. Tanabe: On the abstract evolution · Zbl 0106.09302
[16] Komatsu, H.: Fractional powers of ope · Zbl 0154.16104
[17] Ladyženskaja, O. A., V. A. Solonnikov &amp; N. N. Ural’ceva: Linear and Quasilinear Equations of Parabolic Type. Amer. Math., Soc., Providence, R.I., 1968.
[18] Lions, J. L., &amp; E. Magenes: Non-Homogeneous Boundary Value Problems and Applications, I. Springer-Verlag, Berlin Heidelberg New York, 1972. · Zbl 0223.35039
[19] Seeley, R.: Norms and domains · Zbl 0218.35034
[20] Struwe, M.: A counterexample in regularity theory for parabolic system · Zbl 0573.35053
[21] Struwe, M.: Some regularity results for quasilinear parabolic systems. Comm. Math. Univ. Carolinae 261 (1985), 129–150. · Zbl 0572.35057
[22] Tanabe, H.: Equations of Evolution. Pitman, London, 1979. · Zbl 0417.35003
[23] Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Amsterdam, 1978. · Zbl 0387.46033
[24] Yagi, A.: On the abstract linear evolution equations in Banach spa · Zbl 0318.34068
[25] Yagi, A.: On the abstract evolution equation of parabolic type. Osaka J. Math. 14 (1977), 557–568. · Zbl 0371.47037
[26] Furuya, K.: Analyticity of solutions of quasilinear evolution equations. I and II, Osaka J. Math. 18 (1981), 669–698 and 20 (1983), 217–236. · Zbl 0516.34008
[27] Kato, T.: Abstract evolution equations of parabolic type in Banach and Hilbert spaces. Nagoya Math. J. 19 (1961), 93–125. · Zbl 0114.06102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.