Levitt, Gilbert La décomposition dynamique et la différentiabilité des feuilletages des surfaces. (The dynamic decomposition and the differentiability of foliations of surfaces). (French) Zbl 0596.57019 Ann. Inst. Fourier 37, No. 3, 85-116 (1987). Let \({\mathcal F}\) be a singular foliation on a compact surface M. In order to analyse the dynamics of \({\mathcal F}\), one can canonically cut up M into subsurfaces bounded by curves transverse to \({\mathcal F}:\) the components of the recurrence of \({\mathcal F}\) (quasiminimal sets) are contained in the ”regions of recurrence” and may be studied separately; on the other hand, the dynamics is trivial in the other regions (”regions of passage”). The paper also offers a definition of a singular foliation of class \(C^ r\) on M, and studies the topological and dynamical features of \(C^ 2\) (or \(C^{\infty})\) foliations. Cited in 1 ReviewCited in 12 Documents MSC: 57R30 Foliations in differential topology; geometric theory 57N05 Topology of the Euclidean \(2\)-space, \(2\)-manifolds (MSC2010) 37C10 Dynamics induced by flows and semiflows Keywords:differentiability; singular foliation on a compact surface; recurrence; quasiminimal sets × Cite Format Result Cite Review PDF Full Text: DOI Numdam EuDML References: [1] [1] , Analytic quasi-periodic curves of discontinuous type on a torus, Proc. London Math. Soc., 44 (1938), 175-215. · JFM 64.1141.02 [2] [2] , Sur les courbes définies par les équations différentielles à la surface du tore, J. Math. Pures et Appl., 11 (1932), 333-375. · JFM 58.1124.04 [3] [3] , , , Travaux de Thurston sur les surfaces, Astérisque, 66-67 (1979), SMF Paris. · Zbl 0406.00016 [4] [4] , Smoothability of Cherry flows on two-manifolds, in Geometric Dynamics, Rio 1981, Springer Lecture Notes, 1007 (1983), 308-331. · Zbl 0545.58039 [5] [5] , Smoothing continuous flows and the converse of Denjoy-Schwartz theorem, Ann. Ac. Bras. de Cien., 51 (1979), 581-589. · Zbl 0478.58020 [6] [6] , , , Bifurcations of Cherry attractors, Communication orale de De Melo. [7] [7] , Invariant measures of flows on oriented surfaces, Soviet Math. Dokl., 14 (1973), 1104-1108. · Zbl 0298.28013 [8] [8] , Introduction to diophantine approximation, Addison Wesley, 1966. · Zbl 0144.04005 [9] [9] , Pantalons et feuilletages des surfaces, Topology, 21 (1982), 9-33. · Zbl 0473.57014 [10] [10] , Feuilletages des surfaces, Ann. Inst. Fourier, 32-2 (1982), 179-217. · Zbl 0454.57015 [11] [11] , Foliations and laminations on hyperbolic surfaces, Topology, 22 (1983), 119-135. · Zbl 0522.57027 [12] [12] , Feuilletages des surfaces, Thèse d’état, Université Paris 7, juin 1983. · Zbl 0454.57015 [13] [13] , , Differentiability and topology of labyrinths in the disc and annulus, Topology, 26 (1987), 173-186. · Zbl 0621.57013 [14] [14] , Trajectories on the closed orientable surfaces, Math. Sb., 12 (54) (1943), 71-84 (en russe). · Zbl 0063.03856 [15] [15] , Labyrinths in the disc and surfaces, Ann. of Math., 117 (1983), 1-33. · Zbl 0522.57028 [16] [16] , On the number of invariant measures for flows on orientable surfaces, Math. USSR Izv., 9 (1975), 813-830. · Zbl 0336.28007 [17] [17] , A generalization of a Poincaré-Bendixson theorem to closed two-dimensional manifolds, Amer. Jour. of Math., 85 (1963), 453-458. · Zbl 0116.06803 [18] [18] , Asymptotic cycles, Ann. of Math., 66 (1957), 270-284. · Zbl 0207.22603 [19] [19] , Morse foliations, Thesis, Warwick, 1976. [20] [20] , On the geometry and dynamics of diffeomorphisms of surfaces, preprint. · Zbl 0674.57008 [21] [21] , The topological transformations of a simple closed curve into itself, Amer. J. Math., 57 (1935), 142-152. · JFM 61.0627.02 [22] [22] , Quasiminimal invariants for folliations of orientable closed surfaces, preprint Rice university. · Zbl 0697.57012 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.