×

Internal properness and stability in linear systems. (English) Zbl 0596.93050

The author examines the concept of internal properness for generalised state space systems. Starting from the requirement that ”stability” for such systems dictates that for certain class of external inputs and/or disturbances the ”generalized state” and ”output” vectors must behave according to a certain acceptable behaviour at \(t=0\) and \(t=\infty\), the author looks at the concept of internal properness as the dual of that of internal stability. This is done by regarding the stability of such systems as defined by the location in the extended complex plane of the finite and infinite zeros of the characteristic matrix sE-A associated with such systems. Thus while acceptable behaviour at \(t=\infty\) necessitates that all finite zeros of sE-A lie in the open left half complex plane: \(Re(s)<0\), acceptable behaviour at \(t=0\) (i.e. absence of impulsive behaviour at \(t=0)\) imposes the requirement that sE-A has also no zeros at \(s=\infty.\)
Based on this duality between finite and infinite zeros of sE-A, the author examines various problems of synthesis of feedback systems. These include the ”disturbance rejection” problem, the exact model matching problem, output regulation, block decoupling etc.
Reviewer: A.Vardulakis

MSC:

93D99 Stability of control systems
34A99 General theory for ordinary differential equations
93C05 Linear systems in control theory
30C15 Zeros of polynomials, rational functions, and other analytic functions of one complex variable (e.g., zeros of functions with bounded Dirichlet integral)
34D30 Structural stability and analogous concepts of solutions to ordinary differential equations
70G10 Generalized coordinates; event, impulse-energy, configuration, state, or phase space for problems in mechanics
PDFBibTeX XMLCite

References:

[1] G. Basile, G. Marro: Controlled and conditioned invariant subspaces in linear system theory. J. Optim. Theory Appl. 3 (1969), 306-315. · Zbl 0172.12501 · doi:10.1007/BF00931370
[2] G. Basile, G. Marro: A state space approach to non-mteracting controls. Ricerche Autom. 1 (1970), 68-77.
[3] G. Bengtsson: Output regulation and internal models - A frequency domain approach. Automatica 13 (1977), 335-345. · Zbl 0359.93009 · doi:10.1016/0005-1098(77)90016-4
[4] S. P. Bhattacharyya: Transfer function conditions for output feedback disturbance rejections. IEEE Trans. Automat. Control AC-27 (1982), 974-977. · Zbl 0486.93040
[5] F. M. Callier, C A. Desoer: Multivariable Feedback Systems. Springer, New York 1982. · Zbl 0248.93017
[6] L. Chang, J. B. Pearson: Synthesis of linear multivariable regulators. IEEE Trans. Automat. Control AC-26 (1981), 194-202. · Zbl 0465.93044
[7] C. Commault J. M. Dion, S. Perez: Transfer matrix approach to the disturbance decoupling problem. Preprints 9th IFAC Congress, vol. VIII, 130-133, Budapest 1984.
[8] J. Descusse J. F. Lafay, V. Kučera: Decoupling by restricted static state feedback - The general case. IEEE Trans. Automat. Control AC-29 (1984), 79 - 81. · Zbl 0543.93020 · doi:10.1109/TAC.1984.1103368
[9] J. Descusse, M. Malabre: Solvability of the decoupling problem for linear constant (A, B, C, D)-quadruples with regular output feedback. IEEE Trans. Automat. Control AC-27 (1982), 456-458. · Zbl 0484.93021 · doi:10.1109/TAC.1982.1102903
[10] C. A. Desoer R. W. Liu J. Murray, R. Saeks: Feedback system design - The functional representation approach to analysis and synthesis. IEEE Trans. Automat. Control AC-25 (1980), 399-412. · Zbl 0442.93024 · doi:10.1109/TAC.1980.1102374
[11] P. L. Falb, W. A. Wolovich: Decoupling in the design and synthesis of multivariable control systems. IEEE Trans. Automat. Control AC-12 (1967), 651 - 659.
[12] B. A. Francis: The multivariable servomechanism problem from the input-output viewpoint. IEEE Trans. Automat. Control AC-22 (1977), 322-328. · Zbl 0354.93050 · doi:10.1109/TAC.1977.1101501
[13] B. A. Francis, M. Vidyasagar: Algebraic and topological aspects of the regulator problem for lumped linear systems. Automatica 19 (1983), 87-90. · Zbl 0498.93013 · doi:10.1016/0005-1098(83)90078-X
[14] M. L. J. Hautus, M. Heymann: Linear feedback decoupling - Transfer function analysis. IEEE Trans. Automat. Control AC-28 (1983), 823-832. · Zbl 0523.93035 · doi:10.1109/TAC.1983.1103320
[15] R. J. Kavanagh: Noninteracting controls in linear multivariable systems. AIEE Trans. Appl. Indust. 76 (1957), 95-100.
[16] P. P. Khargonekar, A. B. Özgüler: Regulator Problem with Internal Stability. Report, The Center for Mathematical System Theory, University of Florida, Gainesville, Florida 1982. · Zbl 0539.93066
[17] V. Kučera: Discrete Linear Control- The Polynomial Equation Approach. Wiley, Chichester 1979.
[18] V. Kučera: Disturbance rejection - A polynomial approach. IEEE Trans. Automat. Control AC-28 (1983), 508-511. · Zbl 0519.93027 · doi:10.1109/TAC.1983.1103244
[19] V. Kučera: Block decoupling by dynamic compensation with internal properness and stability. Problems Control Inform. Theory 12 (1983), 379-389. · Zbl 0532.93032
[20] V. Kučera: Design of internally proper and stable control systems. Preprints 9th IFAC Congress, vol. VII, 94 - 98. Budapest 1984.
[21] V. S. Kulebakin: On applicability of the principle of absolute invariance in real systems. (in Russian). Dokl. Akad. Nauk SSSR 60 (1948), 231-234.
[22] M. Malabre: The model following problem for linear constant (A, B, C, D) quadruples. IEEE Trans. Automat. Control AC-27 (1982), 458-461. · Zbl 0484.93022 · doi:10.1109/TAC.1982.1102948
[23] M. Malabre, V. Kučera: Infinite structure and exact model matching problem - A geometric approach. IEEE Trans. Automat. Control AC-29 (1984), 266 - 268. · Zbl 0534.93014 · doi:10.1109/TAC.1984.1103502
[24] B. S. Morgan: The synthesis of linear multivariable systems by state feedback. Proc. Joint Automat. Control Conf. 468-472, 1964.
[25] A. S. Morse: Structure and design of linear model following systems. IEEE Trans. Automat. Control AC-18 (1973), 346-354. · Zbl 0264.93005 · doi:10.1109/TAC.1973.1100342
[26] A. S. Morse: System invariants under feedback and cascade control. Proc. Internat. Symp. Mathematical System Theory, Udine, Italy, Springer-Verlag, New York 1975, 61 - 74.
[27] A. S. Morse, W. M. Wonham: Decoupling and pole placement by dynamic compensation. SIAM J. Control 8 (1970), 317-337. · Zbl 0204.46401 · doi:10.1137/0308022
[28] A. S. Morse, W. M. Wonham: Status of non interacting control. IEEE Trans. Automat. Control AC-16 (1971), 568-581.
[29] Pernebo L.: An algebraic theory for the design of controllers for linear multivariable systems. IEEE Trans. Automat. Control AC-26 (1981), 171-194. · Zbl 0467.93041 · doi:10.1109/TAC.1981.1102553
[30] H. H. Rosenbrock: Structural properties of linear dynamical systems. Internat. J. Control 20 (1974), 191-202. · Zbl 0285.93019 · doi:10.1080/00207177408932729
[31] G. C. Verghese: Infinite Frequency Behaviour of Generalized Dynamical Systems. Ph. D. Thesis, Electrical Engineering Department, Stanford University, California 1978.
[32] G. C. Verghese B. C. Lévy, T. Kailath: A generalized state-space for singular systems. IEEETrans. Automat. Control AC-26 (1981), 811-831. · Zbl 0541.34040 · doi:10.1109/TAC.1981.1102763
[33] I. N. Voznesenskij: A control of systems with many outputs. (ín Russian). Automat. i Telemeh. 4(1936), 7-38.
[34] J. C. Willems, C. Commault: Disturbance decoupling by measurement feedback with stability or pole placement. SIAM J. Control Optim. 19 (1981), 490-504. · Zbl 0467.93036 · doi:10.1137/0319029
[35] W. A. Wolovich: Linear Multivariable Systems. Springer-Verlag, New York 1974. · Zbl 0291.93002
[36] W. A. Wolovich: Skew-prime polynomial matrices. IEEE Trans. Automat. Control AC-23 (1978), 880-887. · Zbl 0397.93008 · doi:10.1109/TAC.1978.1101854
[37] W. A. Wolovich, P. Ferreira: Output regulation and tracking in linear multivariable systems. IEEE Trans. Automat. Control AC-24 (1979), 460-465. · Zbl 0429.93052
[38] W. M. Wonham: Linear Multivariable Control - A Geometric Approach. Springer-Verlag, New York 1974. · Zbl 0314.93007
[39] W. M. Wonham, J. B. Pearson: Regulation and internal stabilization in linear multivariable systems. SIAM J. Control Optim. 12 (1984), 5-18. · Zbl 0248.93013 · doi:10.1137/0312002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.