Sergeev, Alexander N.; Veselov, Alexander P. Grothendieck rings of basic classical Lie superalgebras. (English) Zbl 1278.17006 Ann. Math. (2) 173, No. 2, 663-703 (2011). Summary: The Grothendieck rings of finite dimensional representations of the basic classical Lie superalgebras are explicitly described in terms of the corresponding generalized root systems. We show that they can be interpreted as the subrings in the weight group rings invariant under the action of certain groupoids called super Weyl groupoids. Cited in 17 Documents MSC: 17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights) 17B20 Simple, semisimple, reductive (super)algebras 18F30 Grothendieck groups (category-theoretic aspects) 19A49 \(K_0\) of other rings Keywords:Grothendieck ring; Lie superalgebras; representations × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] M. Atiyah, ”Mathematics: art and science,” Bull. Amer. Math. Soc., vol. 43, iss. 1, pp. 87-88, 2006. · Zbl 1121.00307 · doi:10.1090/S0273-0979-05-01095-5 [2] F. A. Berezin, Laplace-Casimir operators (General Theory). · Zbl 0659.58001 [3] N. Bourbaki, Éléments de Mathématique. Fasc. XXXIV. Groupes et Algèbres de Lie. Chap. IV: Groupes de Coxeter et Systèmes de Tits. Chap. V: Groupes Engendrés par des Réflexions. Chap. VI: Systèmes de Racines, Paris: Hermann, 1968, vol. 1337. · Zbl 0186.33001 [4] N. Bourbaki, Éléments de Mathématique. Fasc. XXXVIII: Groupes et Algèbres de Lie. Chap. VII: Sous-Algèbres de Cartan, Éléments Réguliers. Chap. VIII: Algèbres de Lie Semi-Simples dÉployées, Paris: Hermann, 1975, vol. 1364. · Zbl 0329.17002 [5] R. Brown, ”From groups to groupoids: a brief survey,” Bull. London Math. Soc., vol. 19, iss. 2, pp. 113-134, 1987. · Zbl 0612.20032 · doi:10.1112/blms/19.2.113 [6] J. Brundan, ”Kazhdan-Lusztig polynomials and character formulae for the Lie superalgebra \(\mathfrakg\mathfrakl(m| n)\),” J. Amer. Math. Soc., vol. 16, iss. 1, pp. 185-231, 2003. · Zbl 1050.17004 · doi:10.1090/S0894-0347-02-00408-3 [7] J. Brundan and J. Kujawa, ”A new proof of the Mullineux conjecture,” J. Algebraic Combin., vol. 18, iss. 1, pp. 13-39, 2003. · Zbl 1043.20006 · doi:10.1023/A:1025113308552 [8] O. A. Chalykh and A. P. Veselov, ”Commutative rings of partial differential operators and Lie algebras,” Commun. Math. Phys., vol. 126, iss. 3, pp. 597-611, 1990. · Zbl 0746.47025 · doi:10.1007/BF02125702 [9] W. Fulton and J. Harris, Representation Theory, New York: Springer-Verlag, 1991, vol. 129. · Zbl 0744.22001 [10] I. Heckenberger, ”The Weyl groupoid of a Nichols algebra of diagonal type,” Invent. Math., vol. 164, iss. 1, pp. 175-188, 2006. · Zbl 1174.17011 · doi:10.1007/s00222-005-0474-8 [11] I. Heckenberger and H. Yamane, ”A generalization of Coxeter groups, root systems, and Matsumoto’s theorem,” Math. Z., vol. 259, iss. 2, pp. 255-276, 2008. · Zbl 1198.20036 · doi:10.1007/s00209-007-0223-3 [12] V. G. Kac, ”Lie superalgebras,” Adv. Math., vol. 26, iss. 1, pp. 8-96, 1977. · Zbl 0366.17012 · doi:10.1016/0001-8708(77)90017-2 [13] V. G. Kac, ”Representations of classical Lie superalgebras,” in Differential Geometrical Methods in Mathematical Physics, II, New York: Springer-Verlag, 1978, vol. 676, pp. 597-626. · Zbl 0388.17002 · doi:10.1007/BFb0063691 [14] V. G. Kac, ”Laplace operators of infinite-dimensional Lie algebras and theta functions,” Proc. Nat. Acad. Sci. U.S.A., vol. 81, iss. 2, Phys. Sci., pp. 645-647, 1984. · Zbl 0532.17008 · doi:10.1073/pnas.81.2.645 [15] H. M. Khudaverdian and T. T. Voronov, ”Berezinians, exterior powers and recurrent sequences,” Lett. Math. Phys., vol. 74, iss. 2, pp. 201-228, 2005. · Zbl 1083.58008 · doi:10.1007/s11005-005-0025-7 [16] J. W. van de Leur, Private communication, December 2005,. [17] I. G. Macdonald, Symmetric Functions and Hall Polynomials, second ed., New York: Oxford Univ. Press, 1995. · Zbl 0824.05059 [18] A. L. Onishchik and È. B. Vinberg, Lie Groups and Algebraic Groups, New York: Springer-Verlag, 1990. · Zbl 0722.22004 [19] J. Serre, Algèbres de Lie Semi-Simples Complexes, New York-Amsterdam: W. A. Benjamin, Inc., 1966. · Zbl 0144.02105 [20] J. Serre, Représentations Linéaires des Groupes Finis, Paris: Hermann, 1967. · Zbl 0189.02603 [21] V. Serganova, ”On generalizations of root systems,” Commun. Algebra, vol. 24, iss. 13, pp. 4281-4299, 1996. · Zbl 0902.17002 · doi:10.1080/00927879608825814 [22] V. Serganova, ”Kazhdan-Lusztig polynomials and character formula for the Lie superalgebra \(\mathfrakg\mathfrakl(m| n)\),” Selecta Math., vol. 2, iss. 4, pp. 607-651, 1996. · Zbl 0881.17005 · doi:10.1007/BF02433452 [23] V. Serganova, ”Characters of irreducible representations of simple Lie superalgebras,” in Proc. Internat. Congr. Math., Vol. II, 1998, pp. 583-593. · Zbl 0898.17002 [24] V. Serganova, Private communication, 2004. [25] V. Serganova, ”Kac-Moody superalgebras and integrability,” in Developments and Trends in Infinite-Dimensional Lie Theory, Boston, MA: Birkhäuser Boston, Inc., 2011, vol. 288, pp. 169-218. · Zbl 1261.17025 · doi:10.1007/978-0-8176-4741-4_6 [26] A. Sergeev, ”Invariant polynomial functions on Lie superalgebras,” C. R. Acad. Bulgare Sci., vol. 35, iss. 5, pp. 573-576, 1982. · Zbl 0501.17003 [27] A. Sergeev, ”The invariant polynomials on simple Lie superalgebras,” Represent. Theory, vol. 3, pp. 250-280, 1999. · Zbl 0999.17016 · doi:10.1090/S1088-4165-99-00077-1 [28] A. Sergeev, ”Tensor algebra of the identity representation as a module over the Lie superalgebras \({ Gl}(n,\,m)\) and \(Q(n)\),” Mat. Sb., vol. 123(165), iss. 3, pp. 422-430, 1984. · Zbl 0573.17002 · doi:10.1070/SM1985v051n02ABEH002867 [29] A. Sergeev and A. P. Veselov, ”Deformed quantum Calogero-Moser problems and Lie superalgebras,” Commun. Math. Phys., vol. 245, iss. 2, pp. 249-278, 2004. · Zbl 1062.81097 · doi:10.1007/s00220-003-1012-4 [30] A. Sergeev and A. P. Veselov, ”Deformed Macdonald-Ruijsenaars operators and super Macdonald polynomials,” Commun. Math. Phys., vol. 288, iss. 2, pp. 653-675, 2009. · Zbl 1180.33024 · doi:10.1007/s00220-009-0779-3 [31] A. Weinstein, ”Groupoids: unifying internal and external symmetry. A tour through some examples,” Notices Amer. Math. Soc., vol. 43, iss. 7, pp. 744-752, 1996. · Zbl 1044.20507 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.