On the spectral side of Arthur’s trace formula – absolute convergence. (English) Zbl 1242.11036

Introduced by Selberg for hyperbolic surfaces, the trace formula has been systematically studied by J. Arthur [“An introduction to the trace formula”, Providence, RI: American Mathematical Society. Clay Math. Proc. 4, 1–263 (2005; Zbl 1152.11021)] for adelic quotients \(G(F)\backslash G(\mathbb A)\) for any reductive group \(G\) defined on a number field \(F\). The trace formula settles the identity of a sum of geometric terms (weighted orbital integrals) with a sum of spectral terms (weighted traces of representations). The aim of this paper is a better comprehension of some limits of intertwining operators, with specific expressions for these limits as sums of products of first-order derivatives of intertwining operators. This analysis is based on the companion paper by the first two authors [Ann. Math. (2) 174, No. 1, 197–223 (2011; Zbl 1241.52006)], which proves combinatorial identities for some formal series families indexed by the chambers of a fan and with values in a non abelian algebra.
Even if the exposition follows strictly Arthur’s original expansion, it offers a refined spectral expansion and, as a original corollary, a convergence in trace norm, which is of primary importance for some application of the trace formula, e.g. Weyl’s laws or limit multiplicities. It explains also the behaviour of Maass-Selberg relations in some degenerate cases.


11F72 Spectral theory; trace formulas (e.g., that of Selberg)
22E55 Representations of Lie and linear algebraic groups over global fields and adèle rings
58J50 Spectral problems; spectral geometry; scattering theory on manifolds
Full Text: DOI


[1] J. Arthur, ”A trace formula for reductive groups. I. Terms associated to classes in \(G({\mathbf Q})\),” Duke Math. J., vol. 45, iss. 4, pp. 911-952, 1978. · Zbl 0499.10032 · doi:10.1215/S0012-7094-78-04542-8
[2] J. Arthur, ”A trace formula for reductive groups. II. Applications of a truncation operator,” Compositio Math., vol. 40, iss. 1, pp. 87-121, 1980. · Zbl 0499.10033
[3] J. Arthur, ”The trace formula in invariant form,” Ann. of Math., vol. 114, iss. 1, pp. 1-74, 1981. · Zbl 0495.22006 · doi:10.2307/1971376
[4] J. Arthur, ”On a family of distributions obtained from Eisenstein series. I. Application of the Paley-Wiener theorem,” Amer. J. Math., vol. 104, iss. 6, pp. 1243-1288, 1982. · Zbl 0541.22010 · doi:10.2307/2374061
[5] J. Arthur, ”On a family of distributions obtained from Eisenstein series. II. Explicit formulas,” Amer. J. Math., vol. 104, iss. 6, pp. 1289-1336, 1982. · Zbl 0562.22004 · doi:10.2307/2374062
[6] J. Arthur, ”On the inner product of truncated Eisenstein series,” Duke Math. J., vol. 49, iss. 1, pp. 35-70, 1982. · Zbl 0518.22012 · doi:10.1215/S0012-7094-82-04904-3
[7] J. Arthur, ”Intertwining operators and residues. I. Weighted characters,” J. Funct. Anal., vol. 84, iss. 1, pp. 19-84, 1989. · Zbl 0679.22011 · doi:10.1016/0022-1236(89)90110-9
[8] J. Arthur, ”An introduction to the trace formula,” in Harmonic Analysis, the Trace Formula, and Shimura Varieties, Providence, RI: Amer. Math. Soc., 2005, vol. 4, pp. 1-263. · Zbl 1152.11021
[9] P. Borwein and T. Erdélyi, ”Sharp extensions of Bernstein’s inequality to rational spaces,” Mathematika, vol. 43, iss. 2, pp. 413-423 (1997), 1996. · Zbl 0869.41010 · doi:10.1112/S0025579300011876
[10] T. Finis and E. M. Lapid, ”On the Arthur-Selberg trace formula for \(GL(2)\),” Groups Geom. Dyn., vol. 5, pp. 367-391, 2011. · Zbl 1268.11069 · doi:10.4171/GGD/132
[11] T. Finis and E. M. Lapid, ”On the continuity of Arthur’s trace formula: the semisimple terms,” Compos. Math., vol. 147, pp. 784-802, 2011. · Zbl 1266.11072 · doi:10.1112/S0010437X11004891
[12] T. Finis and E. M. Lapid, On the spectral side of Arthur’s trace formula - combinatorial setup. · Zbl 1241.52006 · doi:10.4007/annals.2011.174.1.6
[13] T. Finis, E. M. Lapid, and W. Müller, ”The spectral side of Arthur’s trace formula,” Proc. Natl. Acad. Sci. USA, vol. 106, iss. 37, pp. 15563-15566, 2009. · Zbl 1203.11042 · doi:10.1073/pnas.0905408106
[14] L. Ji, ”The trace class conjecture for arithmetic groups,” J. Differential Geom., vol. 48, iss. 1, pp. 165-203, 1998. · Zbl 0926.11034
[15] H. Jacquet, E. Lapid, and J. Rogawski, ”Periods of automorphic forms,” J. Amer. Math. Soc., vol. 12, iss. 1, pp. 173-240, 1999. · Zbl 1012.11044 · doi:10.1090/S0894-0347-99-00279-9
[16] R. P. Langlands, On the Functional Equations Satisfied by Eisenstein Series, New York: Springer-Verlag, 1976, vol. 544. · Zbl 0332.10018 · doi:10.1007/BFb0079929
[17] R. P. Langlands, ”Rank-one residues of Eisenstein series,” in Festschrift in Honor of I. I. Piatetski-Shapiro on the Occasion of his Sixtieth Birthday, Part II, Jerusalem, 1990, pp. 111-125. · Zbl 0711.11022
[18] E. Lapid, ”On Arthur’s asymptotic inner product formula of truncated Eisenstein series,” in On Certain \(L\)-Functions: A Volume in Honor of Freydoon Shahidi on the Occasion of his 60 th Birthday, Providence, RI: Amer. Math. Soc., 2011, vol. 13, pp. 309-331. · Zbl 1242.22025
[19] E. Lapid and W. Müller, ”Spectral asymptotics for arithmetic quotients of \({ SL}(n,\mathbb R)/{ SO}(n)\),” Duke Math. J., vol. 149, iss. 1, pp. 117-155, 2009. · Zbl 1220.11071 · doi:10.1215/00127094-2009-037
[20] W. Müller and B. Speh, ”Absolute convergence of the spectral side of the Arthur trace formula for \({ GL}_n\),” Geom. Funct. Anal., vol. 14, iss. 1, pp. 58-93, 2004. · Zbl 1083.11031 · doi:10.1007/s00039-004-0452-0
[21] W. Müller, ”The trace class conjecture in the theory of automorphic forms,” Ann. of Math., vol. 130, pp. 473-529, 1989. · Zbl 0701.11019 · doi:10.2307/1971453
[22] W. Müller, ”The trace class conjecture in the theory of automorphic forms. II,” Geom. Funct. Anal., vol. 8, iss. 2, pp. 315-355, 1998. · Zbl 1073.11514 · doi:10.1007/s000390050059
[23] W. Müller, ”On the singularities of residual intertwining operators,” Geom. Funct. Anal., vol. 10, iss. 5, pp. 1118-1170, 2000. · Zbl 0964.22016 · doi:10.1007/PL00001649
[24] W. Müller, ”On the spectral side of the Arthur trace formula,” Geom. Funct. Anal., vol. 12, iss. 4, pp. 669-722, 2002. · Zbl 1169.11313 · doi:10.1007/s00039-002-8263-7
[25] P. Orlik and H. Terao, Arrangements of Hyperplanes, New York: Springer-Verlag, 1992, vol. 300. · Zbl 0757.55001
[26] A. Postnikov, ”Permutohedra, associahedra, and beyond,” Int. Math. Res. Not., vol. 2009, iss. 6, pp. 1026-1106, 2009. · Zbl 1162.52007 · doi:10.1093/imrn/rnn153
[27] A. Selberg, ”Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series,” J. Indian Math. Soc., vol. 20, pp. 47-87, 1956. · Zbl 0072.08201
[28] G. M. Ziegler, Lectures on Polytopes, New York: Springer-Verlag, 1995, vol. 152. · Zbl 0823.52002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.