Rearrangement inequalities and applications to isoperimetric problems for eigenvalues. (English) Zbl 1234.35161

The aim of this paper is to present a new rearrangement technique and to shown how this technique can be used to obtain new results of Faber-Krahn type for symmetric and nonsymmetric second-order operators. Let \(\Omega \subset R^n \) be a sufficiently smoothly bounded domain, the authors consider the operator \[ L = - \text{div}(A\nabla)+v\nabla+V, \] where \(A\) is a symmetric matrix field in \(W^{1,\infty}(\Omega)\), \(V\) is a continuous function in \(\overline{\Omega}\) and \(v\) is a vector field in \(L^\infty(\Omega,R^n)\).
For a given \(\Omega\), \(A\), \(v\), \(V\) such that \(A \geq \Lambda (x) \text{ Id}\) on \(\Omega\) in the sense of quadratic forms, Id denotes the \(n \times n\) identity matrix, and the principal eigenfunction \( \varphi\) of the operator \(L\) solves \[ \begin{cases} -\text{div}(A\nabla \varphi ) + v\nabla\varphi + V \varphi = \lambda_1 \varphi &\text{in } \Omega, \\ \varphi > 0 &\text{in } \Omega, \\ \varphi = 0 &\text{on } \partial \Omega, \\ \|\varphi\|_{L^{\infty}(\Omega)} = 1,\end{cases} \] we associate the rearranged functions or vector fields \( \tilde{\varphi}\), \(\widehat{\Lambda}\), \(\widehat{v}\), \(\widehat{V} \) defined on \(\Omega^*\), where \(\Omega^*\) denotes the Euclidean ball centered at \(0\) and having the same Lebesgue measure as \(\Omega\). Roughly speaking the main ideas of this new rearrangement technique work as follow. For \[ \Omega_a = \{x \in \Omega, a < \varphi(x) \leq 1 \}, \qquad 0 \leq a < 1, \] and \(\rho (a) \in (0,R]\), such that \(|\Omega_a| = |B_{\rho(a)}|\) (\(B_s\) denotes the open Euclidean ball of radius \(s>0\) centered at \(0\), \(R\) denotes the radius of \(\Omega^*\)), the function \(\rho\) is decreasing, continuous, one-to-one and onto and the rearrangement \(\tilde{\varphi}\) of \(\varphi\) satisfies \[ \int_{\Omega_a} \text{div}(A\nabla \varphi)(x) dx = \int_{B_{\rho(a)}} \text{div}(\widehat{\Lambda}\nabla \tilde{\varphi})(x)dx, \;0 \leq a < 1. \] For \(\tilde{\varphi}\) it follows that, for all \(x \in \overline{\Omega^*} \), \[ \tilde{\varphi}(x) \geq \rho^{-1}(|x|). \] This new rearrangement is in general different from the Schwarz symmetrization. The paper contains results comparing \(\lambda_1(\Omega,A,v,V)\) with \(\lambda_1\) for \(\Omega^*\) and rearranged functions under different types of constrains, for example integral type and \(L^\infty\) type.


35P15 Estimates of eigenvalues in context of PDEs
Full Text: DOI arXiv


[1] S. Agmon, ”On positivity and decay of solutions of second order elliptic equations on Riemannian manifolds,” in Methods of Functional Analysis and Theory of Elliptic Equations, Naples: Liguori, 1983, pp. 19-52. · Zbl 0595.58044
[2] A. Alvino and G. Trombetti, ”Elliptic equations with lower-order terms and reordering,” Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., vol. 66, iss. 3, pp. 194-200, 1979. · Zbl 0455.35052
[3] A. Alvino and G. Trombetti, ”On the best majorization constants for a class of degenerate and nondegenerate elliptic equations,” Ricerche Mat., vol. 30, iss. 1, pp. 15-33, 1981. · Zbl 0489.35013
[4] A. Alvino, G. Trombetti, P. Lions, and S. Matarasso, ”Comparison results for solutions of elliptic problems via symmetrization,” Ann. Inst. H. Poincaré Anal. Non Linéaire, vol. 16, iss. 2, pp. 167-188, 1999. · Zbl 0924.35038
[5] M. S. Ashbaugh and R. D. Benguria, ”A sharp bound for the ratio of the first two eigenvalues of Dirichlet Laplacians and extensions,” Ann. of Math., vol. 135, iss. 3, pp. 601-628, 1992. · Zbl 0757.35052
[6] M. S. Ashbaugh and R. D. Benguria, ”Eigenvalue ratios for Sturm-Liouville operators,” J. Differential Equations, vol. 103, iss. 1, pp. 205-219, 1993. · Zbl 0785.34027
[7] M. S. Ashbaugh and R. D. Benguria, ”Isoperimetric bounds for higher eigenvalue ratios for the \(n\)-dimensional fixed membrane problem,” Proc. Roy. Soc. Edinburgh Sect. A, vol. 123, iss. 6, pp. 977-985, 1993. · Zbl 0819.35104
[8] M. S. Ashbaugh and R. D. Benguria, ”On Rayleigh’s conjecture for the clamped plate and its generalization to three dimensions,” Duke Math. J., vol. 78, iss. 1, pp. 1-17, 1995. · Zbl 0833.35035
[9] M. S. Ashbaugh, E. M. Harrell II, and R. Svirsky, ”On minimal and maximal eigenvalue gaps and their causes,” Pacific J. Math., vol. 147, iss. 1, pp. 1-24, 1991. · Zbl 0734.35061
[10] C. Bandle, ”Isoperimetric inequality for some eigenvalues of an inhomogeneous, free membrane,” SIAM J. Appl. Math., vol. 22, pp. 142-147, 1972. · Zbl 0237.35069
[11] C. Bandle, Isoperimetric Inequalities and Applications, Boston, MA: Pitman (Advanced Publishing Program), 1980, vol. 7. · Zbl 0436.35063
[12] D. C. Barnes, ”Extremal problems for eigenvalues with applications to buckling, vibration and sloshing,” SIAM J. Math. Anal., vol. 16, iss. 2, pp. 341-357, 1985. · Zbl 0568.73047
[13] H. Berestycki, F. Hamel, and N. Nadirashvili, ”Elliptic eigenvalue problems with large drift and applications to nonlinear propagation phenomena,” Comm. Math. Phys., vol. 253, iss. 2, pp. 451-480, 2005. · Zbl 1123.35033
[14] H. Berestycki, L. Nirenberg, and S. R. S. Varadhan, ”The principal eigenvalue and maximum principle for second-order elliptic operators in general domains,” Comm. Pure Appl. Math., vol. 47, iss. 1, pp. 47-92, 1994. · Zbl 0806.35129
[15] M. Bossel, ”Membranes élastiquement liées: extension du théorème de Rayleigh-Faber-Krahn et de l’inégalité de Cheeger,” C. R. Acad. Sci. Paris Sér. I Math., vol. 302, iss. 1, pp. 47-50, 1986. · Zbl 0606.73018
[16] F. Brock, ”An isoperimetric inequality for eigenvalues of the Stekloff problem,” ZAMM Z. Angew. Math. Mech., vol. 81, iss. 1, pp. 69-71, 2001. · Zbl 0971.35055
[17] D. Bucur and A. Henrot, ”Minimization of the third eigenvalue of the Dirichlet Laplacian,” R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., vol. 456, iss. 1996, pp. 985-996, 2000. · Zbl 0974.35082
[18] S. Cheng and K. Oden, ”Isoperimetric inequalities and the gap between the first and second eigenvalues of an Euclidean domain,” J. Geom. Anal., vol. 7, iss. 2, pp. 217-239, 1997. · Zbl 0920.58054
[19] D. Daners, ”A Faber-Krahn inequality for Robin problems in any space dimension,” Math. Ann., vol. 335, iss. 4, pp. 767-785, 2006. · Zbl 1220.35103
[20] D. Daners and J. Kennedy, ”Uniqueness in the Faber-Krahn inequality for Robin problems,” SIAM J. Math. Anal., vol. 39, iss. 4, pp. 1191-1207, 2007/08. · Zbl 1155.35403
[21] G. Faber, ”Beweis, dass unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die kreisförmige den tiefsten Grundton gibt,” Sitzungsberichte der mathematisch-physikalischen Klasse der Bauerischen Akademie der Wissenschaften zu München, pp. 169-172, 1923. · JFM 49.0342.03
[22] A. Friedman, ”The asymptotic behavior of the first real eigenvalue of a second order elliptic operator with a small parameter in the highest derivatives,” Indiana Univ. Math. J., vol. 22, pp. 1005-1015, 1972/73. · Zbl 0245.35065
[23] F. Hamel, N. Nadirashvili, and E. Russ, ”An isoperimetric inequality for the principal eigenvalue of the Laplacian with drift,” C. R. Math. Acad. Sci. Paris, vol. 340, iss. 5, pp. 347-352, 2005. · Zbl 1066.35066
[24] F. Hamel, N. Nadirashvili, and E. Russ, A Faber-Krahn inequality with drift.
[25] A. Henrot, ”Minimization problems for eigenvalues of the Laplacian,” J. Evol. Equ., vol. 3, iss. 3, pp. 443-461, 2003. · Zbl 1049.49029
[26] A. Henrot, Extremum Problems for Eigenvalues of Elliptic Operators, Basel: Birkhäuser, 2006. · Zbl 1109.35081
[27] C. J. Holland, ”A minimum principle for the principal eigenvalue for second-order linear elliptic equations with natural boundary conditions,” Comm. Pure Appl. Math., vol. 31, iss. 4, pp. 509-519, 1978. · Zbl 0388.35053
[28] S. Karaa, ”Extremal eigenvalue gaps for the Schrödinger operator with Dirichlet boundary conditions,” J. Math. Phys., vol. 39, iss. 4, pp. 2325-2332, 1998. · Zbl 1042.35601
[29] S. Karaa, ”Sharp estimates for the eigenvalues of some differential equations,” SIAM J. Math. Anal., vol. 29, iss. 5, pp. 1279-1300, 1998. · Zbl 0914.34072
[30] E. Krahn, ”Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises,” Math. Ann., vol. 94, iss. 1, pp. 97-100, 1925. · JFM 51.0356.05
[31] E. Krahn, ”Über Minimaleigenschaft der Kugel in drei und mehr Dimensionen,” Acta Comm. Univ. Tartu (Dorpat), vol. A9, pp. 1-44, 1926. · JFM 52.0510.03
[32] Edgar Krahn, 1894-1961, A Centenary Volume, Lumiste, &. and Peetre, J., Eds., Amsterdam: IOS Press, 1994. · Zbl 0834.01010
[33] P. Li and S. -T. Yau, ”On the Schrödinger equation and the eigenvalue problem,” Comm. Math. Phys., vol. 88, iss. 3, pp. 309-318, 1983. · Zbl 0554.34029
[34] P. Marcellini, ”Bounds for the third membrane eigenvalue,” J. Differential Equations, vol. 37, iss. 3, pp. 438-443, 1980. · Zbl 0421.35066
[35] N. S. Nadirashvili, ”Rayleigh’s conjecture on the principal frequency of the clamped plate,” Arch. Rational Mech. Anal., vol. 129, iss. 1, pp. 1-10, 1995. · Zbl 0826.73035
[36] R. D. Nussbaum and Y. Pinchover, ”On variational principles for the generalized principal eigenvalue of second order elliptic operators and some applications,” J. Anal. Math., vol. 59, pp. 161-177, 1992. · Zbl 0816.35095
[37] R. Osserman, ”The isoperimetric inequality,” Bull. Amer. Math. Soc., vol. 84, iss. 6, pp. 1182-1238, 1978. · Zbl 0411.52006
[38] L. E. Payne, G. Pólya, and H. F. Weinberger, ”On the ratio of consecutive eigenvalues,” J. Math. and Phys., vol. 35, pp. 289-298, 1956. · Zbl 0073.08203
[39] G. Pólya, ”On the characteristic frequencies of a symmetric membrane,” Math. Z., vol. 63, pp. 331-337, 1955. · Zbl 0065.08703
[40] G. Pólya, ”On the eigenvalues of vibrating membranes,” Proc. London Math. Soc., vol. 11, pp. 419-433, 1961. · Zbl 0107.41805
[41] G. Pólya and G. Szegö, Isoperimetric Inequalities in Mathematical Physics, Princeton, NJ: Princeton Univ. Press, 1951. · Zbl 0044.38301
[42] J. W. S. Rayleigh, The Theory of Sound, New York, N. Y.: Dover Publications, 1945. · Zbl 0061.45904
[43] J. Souvcek and V. Souvcek, ”Morse-Sard theorem for real-analytic functions,” Comment. Math. Univ. Carolinae, vol. 13, pp. 45-51, 1972. · Zbl 0235.26012
[44] G. Szegö, ”Inequalities for certain eigenvalues of a membrane of given area,” J. Rational Mech. Anal., vol. 3, pp. 343-356, 1954. · Zbl 0055.08802
[45] G. Talenti, ”Linear elliptic p.d.e.’s: level sets, rearrangements and a priori estimates of solutions,” Boll. Un. Mat. Ital. B, vol. 4, iss. 3, pp. 917-949, 1985. · Zbl 0602.35025
[46] G. Trombetti and J. L. Vázquez, ”A symmetrization result for elliptic equations with lower-order terms,” Ann. Fac. Sci. Toulouse Math., vol. 7, iss. 2, pp. 137-150, 1985. · Zbl 0617.35036
[47] A. D. Ventcel, ”On the asymptotic behavior of the greatest eigenvalue of a second-order elliptic differential operator with a small parameter in the higher derivatives,” Soviet Math., vol. 13, pp. 13-17, 1972. · Zbl 0241.35060
[48] H. F. Weinberger, ”An isoperimetric inequality for the \(N\)-dimensional free membrane problem,” J. Rational Mech. Anal., vol. 5, pp. 633-636, 1956. · Zbl 0071.09902
[49] S. A. Wolf and J. B. Keller, ”Range of the first two eigenvalues of the Laplacian,” Proc. Roy. Soc. London Ser. A, vol. 447, iss. 1930, pp. 397-412, 1994. · Zbl 0816.35097
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.