Schechtman, Gideon Fine embeddings of finite dimensional subspaces of \(L_ p\), \(1\leq p<2\), into \(\ell ^ m_ 1\). (English) Zbl 0597.46019 Proc. Am. Math. Soc. 94, 617-623 (1985). This paper answers the following basic and interesting Banach space structure question. Let m be an integer, \(\epsilon >0\), and \(2>p>1\). How large must n be for all m dimensional subspaces of \(L_ p\) to \((1+\epsilon)\)-embed in \(\ell^ n_ 1\). He shows that the embedding property is satisfied if n exceeds \(\nu m(1+1/p)(\log m)^{-1}\) where \(\nu\) depends on p and \(\epsilon\). An estimate (larger) is also found for \(p=1\). Reviewer: D.Wulbert Cited in 3 Documents MSC: 46B25 Classical Banach spaces in the general theory 46B20 Geometry and structure of normed linear spaces 46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.) Keywords:fine embeddings; \(L_ p\)-spaces; Banach space structure; embedding property PDF BibTeX XML Cite \textit{G. Schechtman}, Proc. Am. Math. Soc. 94, 617--623 (1985; Zbl 0597.46019) Full Text: DOI OpenURL