×

zbMATH — the first resource for mathematics

A review of multiobjective programming and its application in quantitative psychology. (English) Zbl 1229.90181
Summary: Multiobjective programming, a technique for solving mathematical optimization problems with multiple conflicting objectives, has received increasing attention among researchers in various academic disciplines. A summary of multiobjective programming techniques and a review of their applications in quantitative psychology are provided.

MSC:
90C29 Multi-objective and goal programming
90C90 Applications of mathematical programming
91E45 Measurement and performance in psychology
Software:
Algorithm 39; NBI
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Arabie, P.; Hubert, L.J., An overview of combinatorial data analysis, (), 5-63 · Zbl 0902.62005
[2] ()
[3] Benson, H., An improved definition of proper efficiency for vector maximization problems, Journal of mathematical analysis and applications, 71, 232-241, (1979) · Zbl 0418.90081
[4] Borwein, J., Proper efficient points for maximization with respect to cones, SIAM journal on control and optimization, 15, 57-63, (1977) · Zbl 0369.90096
[5] Brusco, M.J., Identifying a reordering of rows and columns for multiple proximity matrices using multiobjective programming, Journal of mathematical psychology, 46, 731-745, (2002) · Zbl 1031.90041
[6] Brusco, M.J.; Cradit, J.D., Graph coloring, minimum-diameter partitioning, and the analysis of confusion matrices, Journal of mathematical psychology, 48, 301-309, (2004) · Zbl 1059.05082
[7] Brusco, M.J.; Cradit, J.D., Bicriterion methods for partitioning dissimilarity matrices, British journal of mathematical and statistical psychology, 58, 319-332, (2005)
[8] Brusco, M.J.; Cradit, J.D.; Stahl, S., A simulated annealing heuristic for a bicriterion partitioning problem in market segmentation, Journal of marketing research, 39, 99-109, (2002)
[9] Brusco, M.J.; Cradit, J.D.; Tashchian, A., Multicriterion clusterwise regression for joint segmentation settings: an application to customer value, Journal of marketing research, 40, 225-234, (2003)
[10] Brusco, M.J.; Stahl, S., An interactive multiobjective programming approach to combinatorial data analysis, Psychometrika, 66, 5-24, (2001) · Zbl 1293.62238
[11] Brusco, M.J.; Stahl, S., Compact integer programming models for extracting subsets of stimuli from confusion matrices, Psychometrika, 66, 405-419, (2001) · Zbl 1293.62239
[12] Brusco, M.J.; Stahl, S., Branch-and-bound applications in combinatorial data analysis, (2005), Springer New York · Zbl 1093.62006
[13] Brusco, M.J.; Stahl, S., Bicriterion seriation methods for skew-symmetric matrices, British journal of mathematical and statistical psychology, 58, 333-343, (2005)
[14] Brusco, M.J.; Stahl, S.; Cradit, J.D., Multiobjective multidimensional (city-block) scaling, (), 113-133, 225-234
[15] Brusco, M.J.; Steinley, D., Cross validation issues in multiobjective clustering, British journal of mathematical and statistical psychology, 62, 349-368, (2008)
[16] Carroll, J.D.; Chang, J.J., Analysis of individual differences in multidimensional scaling via an \(N\)-way generalization of ‘eckart – young’ decomposition, Psychometrika, 35, 283-320, (1970) · Zbl 0202.19101
[17] Chankong, V.; Haimes, Y.Y., Multiobjective decision making theory and methodology, (1983), Elsevier Science New York · Zbl 0525.90085
[18] Chvátal, V., Linear programming, (1983), Freeman New York · Zbl 0318.05002
[19] Coello Coello, C.A., A comprehensive survey of evolutionary-based multiobjective optimization techniques, Knowledge and information systems, 1, 208-214, (1999)
[20] Coello Coello, C.A., An updated survey of GA-based multiobjective optimization techniques, ACM computing surveys, 32, 109-143, (2000)
[21] Coello Coello, C.A.; Lamont, G.; Van Veldhuizen, D., Evolutionary algorithms for solving multi-objective problems, (2007), Springer New York · Zbl 1142.90029
[22] Coello Coello, C.A.; Romero, C.E.M., Evolutionary algorithms and multiple objective optimization, (), 277-331 · Zbl 1095.90592
[23] Cohon, J.L., Multiobjective programming and planning, (1978), Academic Press New York · Zbl 0462.90054
[24] Das, I.; Dennis, J.E., Normal-boundary intersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problems, SIAM journal on optimization, 8, 631-657, (1998) · Zbl 0911.90287
[25] Deb, K., Multi-objective optimization using evolutionary algorithms, (2001), Wiley Chichester, United Kingdom · Zbl 0970.90091
[26] Deb, K., Multi-objective optimization, (), 273-316
[27] Deb, K., Recent developments in evolutionary multi-objective optimization, (), 339-368 · Zbl 1200.90097
[28] Deb, K.; Miettinen, K., Nadir point estimation using evolutionary approaches: better accuracy and computational speed through focused search, (), 339-354 · Zbl 1184.90151
[29] De Corte, W.; Lievens, F.; Sackett, P.R., Combining predictors to achieve optimal trade-offs between selection quality and adverse impact, Journal of applied psychology, 92, 1380-1393, (2007)
[30] Delattre, M.; Hansen, P., Bicriterion cluster analysis, IEEE transactions of pattern analysis and machine intelligence, 2, 277-291, (1980) · Zbl 0458.62049
[31] DeSarbo, W.S.; Grisaffe, D., Combinatorial optimization approaches to constrained market segmentation: an application to industrial market segmentation, Marketing letters, 9, 115-134, (1998)
[32] Ehrgott, M., Multicriteria optimization, (2005), Springer Berlin, Germany · Zbl 1132.90001
[33] Ehrgott, M., A discussion of scalarization techniques for multiple objective integer programming, Annals of operations research, 147, 343-360, (2006) · Zbl 1188.90236
[34] ()
[35] Ehrgott, M.; Gandibleux, X., A survey and annotated bibliography of multiobjective combinatorial optimization, OR spektrum, 22, 425-460, (2000) · Zbl 1017.90096
[36] Ehrgott, M.; Gandibleux, X., Multiobjective combinatorial optimization, (), 369-444 · Zbl 1095.90593
[37] Ehrgott, M.; Gandibleux, X., Multiple objective combinatorial optimization: a tutorial, (), 3-18 · Zbl 1165.90618
[38] Ehrgott, M.; Gandibleux, X., Approximative solution methods for multiobjective combinatorial optimization, Top, 12, 1-88, (2004) · Zbl 1148.90300
[39] ()
[40] Ehrgott, M.; Wiecek, M.M., Multiobjective programming, (), 667-722 · Zbl 1072.90031
[41] Ferligoj, A.; Batagelj, V., Direct multicriteria clustering algorithms, Journal of classification, 9, 43-61, (1992) · Zbl 0756.92027
[42] ()
[43] Gendreau, M.; Potvin, J.-Y., Metaheuristics in combinatorial optimization, Annals of operations research, 140, 189-213, (2005) · Zbl 1091.90067
[44] Geoffrion, A.M., Proper efficiency and the theory of vector maximization, Journal of mathematical analysis and applications, 22, 618-630, (1968) · Zbl 0181.22806
[45] Gonzáles-Pachón, J.; Romero, C., Goal programming: from constrained regression to bounded rationality theories, (), 311-328
[46] Handl, J.; Kell, D.B.; Knowles, J., Multiobjective optimization in bioinformatics and computational biology, IEEE/ACM transactions on computational biology and bioinformatics, 4, 279-292, (2007)
[47] Hansen, P.; Delattre, M., Complete-link cluster analysis by graph coloring, Journal of the American statistical association, 73, 397-403, (1978) · Zbl 0432.05004
[48] Henig, M.I., Proper efficiency with respect to cones, Journal of optimization theory and applications, 36, 387-407, (1982) · Zbl 0452.90073
[49] Hogg, R.V.; Craig, A.T., Introduction to mathematical statistics, (1995), Prentice Hall Upper Saddle River, NJ · Zbl 0192.25603
[50] Hubert, L.J.; Arabie, P.; Meulman, J., Combinatorial data analysis: optimization by dynamic programming, (2001), SIAM Philadelphia · Zbl 0999.90047
[51] Hubert, L.J.; Arabie, P.; Meulman, J., The structural representation of proximity matrices with MATLAB, (2006), SIAM Philadelphia · Zbl 1093.68147
[52] Hunt, B.J.; Wiecek, M.M., Cones to aid decision making in multicriteria programming, (), 153-158 · Zbl 1165.90496
[53] Hwang, C.-L.; Masud, A.S.M., ()
[54] Jahn, J., Mathematical vector optimization in partially ordered linear spaces, (1986), Peter Lang Frankfurt/Main, Germany · Zbl 0578.90048
[55] Jahn, J., Vector optimization: theory, applications, and extensions, (2004), Springer Berlin, Germany · Zbl 1055.90065
[56] Jaszkiewicz, A., Evaluation of multiple objective metaheuristics, (), 65-89 · Zbl 1140.90488
[57] Johnson, S.C., Hierarchical clustering schemes, Psychometrika, 32, 241-254, (1967) · Zbl 1367.62191
[58] Kao, M.-H.; Mandal, A.; Lazar, N.; Stufken, J., Multi-objective experimental designs for event-related fMRI studies, Neuroimage, 44, 849-856, (2009)
[59] Korhonen, P.; Wallenius, J., Interactive multiple objective programming methods, (), 263-286
[60] Krieger, A.M.; Green, P.E., Modifying cluster-based segments to enhance agreement with an exogenous response variable, Journal of marketing research, 33, 351-363, (1996)
[61] Kruskal, J.B., Multidimensional scaling by optimizing goodness-of-fit to a nonmetric hypothesis, Psychometrika, 29, 1-27, (1964) · Zbl 0123.36803
[62] Kruskal, J.B., Nonmetric multidimensional scaling: a numerical method, Psychometrika, 29, 115-129, (1964) · Zbl 0123.36804
[63] Kuhn, H.; Tucker, A., Nonlinear programming, (), 481-492
[64] Lord, F.M., Applications of item response theory to practical testing problems, (1980), Erlbaum Hillsdale, NJ
[65] Marler, R.T.; Arora, J.S., Survey of multi-objective optimization methods for engineering, Structural and multidisciplinary optimization, 26, 369-395, (2004) · Zbl 1243.90199
[66] Masud, A.S.M.; Ravindran, A.R., Multiple criteria decision making, (), 5.1-5.41
[67] Miettinen, K., ()
[68] Papadimitriou, C.H.; Steiglitz, K., Combinatorial optimization: algorithms and complexity, (1998), Dover Mineola, NY · Zbl 0944.90066
[69] Prim, R.C., Shortest connection networks and some generalizations, Bell system technical journal, 36, 1389-1401, (1957)
[70] Przybylski, A.; Gandibleux, X; Ehrgott, M., Computational results for four exact methods to solve the three-objective assignment problem, (), 79-88 · Zbl 1176.90525
[71] Przybylski, A.; Gandibleux, X; Ehrgott, M., A two-phase method for multi-objective integer programming and its application to the assignment problem with three objectives, Discrete optimization, 7, 149-165, (2010) · Zbl 1241.90138
[72] Roberts, F.S., Measurement theory with applications to decisionmaking, utility, and the social sciences, (1985), Cambridge University Press Cambridge, United Kingdom
[73] Romero, C.; Jones, D.F.; Tamiz, M., Goal programming, compromise programming, and reference-point method formulations: linkages and utility theorems, Journal of the operational research society, 49, 986-991, (1998) · Zbl 1140.90491
[74] Sawaragi, Y.; Nakayama, H.; Tanino, T., Theory of multiobjective optimization, (1985), Academic Press Orlando · Zbl 0566.90053
[75] Späth, H., Algorithm 39: clusterwise linear regression, Computing, 22, 367-373, (1979) · Zbl 0387.65028
[76] Steinley, D.; Hubert, L.J., Order-constrained solutions in \(K\)-means clustering: even better than being globally optimal, Psychometrika, 73, 647-664, (2008) · Zbl 1284.62749
[77] Steuer, R.E., Multiple criteria optimization: theory, computation and application, (1986), Wiley New York · Zbl 0663.90085
[78] Stocking, M., Specifying optimum examinees for item parameter estimation in item response theory, Psychometrika, 55, 461-475, (1990)
[79] ()
[80] Timminga, E., Optimum examinee samples for item parameter estimation in item response theory: a multi-objective programming approach, Psychometrika, 60, 137-154, (1995) · Zbl 0925.62509
[81] Ulungu, E.L.; Teghem, J., Multi-objective combinatorial optimization problems: a survey, Journal of multi-criteria decision analysis, 3, 83-104, (1994) · Zbl 0853.90098
[82] Ulungu, E.L.; Teghem, J., The two-phase method: an efficient procedure to solve biobjective combinatorial optimization problems, Foundations of computing and decision sciences, 20, 149-165, (1994) · Zbl 0853.90097
[83] Van der Linden, W.J., Linear models for optimal test design, (2005), Springer New York · Zbl 1084.62115
[84] Veldkamp, B.P., Multiple objective test assembly problems, Journal of educational measurement, 36, 253–266, (1999)
[85] Wager, T.D.; Nichols, T.E., Optimization of experimental designs in fMRI: a general framework using a genetic algorithm, Neuroimage, 18, 293-309, (2003)
[86] Yu, P., Cone convexity, cone extreme points and nondominated solutions in decision problems with multiobjectives, Journal of optimization theory and applications, 14, 319-377, (1974) · Zbl 0268.90057
[87] Yu, P., Multiple criteria decision making: concepts, techniques and extensions, (1985), Plenum New York
[88] Zitzler, E.; Laumanns, M.; Bleuler, S., A tutorial on evolutionary multiobjective optimization, (), 3-37 · Zbl 1134.90491
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.