×

Some common fixed point theorems in normed linear spaces. (English) Zbl 1301.47070

Summary: We establish some generalizations to approximate common fixed points for selfmappings in a normed linear space using the modified Ishikawa iteration process with errors in the sense of L. S. Liu [J. Math. Anal. Appl. 194, No. 1, 114–125 (1995; Zbl 0872.47031)] and A. Rafiq [Gen. Math. 16, No. 2, 49–58 (2008; Zbl 1235.47073)]. We use a more general contractive condition than those of Rafiq [loc. cit.] to establish our results.

MSC:

47H10 Fixed-point theorems
54H25 Fixed-point and coincidence theorems (topological aspects)
46B40 Ordered normed spaces
47J25 Iterative procedures involving nonlinear operators
PDF BibTeX XML Cite
Full Text: EuDML

References:

[1] Berinde, V.: A priori and a posteriori error estimates for a class of \(\varphi \)-contractions. Bulletins for Applied and Computing Math. (1999), 183-192.
[2] Berinde, V.: Iterative Approximation of Fixed Points. Editura Efemeride, Baia Mare, 2002. · Zbl 1036.47037
[3] Berinde, V.: On the convergence of the Ishikawa iteration in the class of quasi-contractive operators. Acta Math. Univ. Comenianae 73, 1 (2004), 119-126. · Zbl 1100.47054
[4] Chatterjea, S. K.: Fixed point theorems. C. R. Acad. Bulgare Sci. 25 (1972), 727-730. · Zbl 0274.54033
[5] Das, G., Debata, J. P.: Fixed points of Quasi-nonexpansive mappings. Indian J. Pure and Appl. Math. 17 (1986), 1263-1269. · Zbl 0605.47054
[6] Ishikawa, S.: Fixed points by a new iteration method. Proc. Amer. Math. Soc. 44 (1974), 147-150. · Zbl 0286.47036
[7] Kannan, R.: Some results on fixed points. Bull. Calcutta Math. Soc. 10 (1968), 71-76. · Zbl 0209.27104
[8] Kannan, R.: Some results on fixed points III. Fund. Math. 70 (1971), 169-177. · Zbl 0246.47065
[9] Kannan, R.: Construction of fixed points of class of nonlinear mapppings. J. Math. Anal. Appl. 41 (1973), 430-438. · Zbl 0261.47037
[10] Liu, L. S.: Ishikawa and Mann iterative process with errors for nonlinear strongly accretive mappings in Banach spaces. J. Math. Anal. Appl. 194, 1 (1995), 114-125. · Zbl 0872.47031
[11] Mann, W. R.: Mean value methods in iterations. Proc. Amer. Math. Soc. 4 (1953), 506-510. · Zbl 0050.11603
[12] Osilike, M. O.: Short proofs of stability results for fixed point iteration procedures for a class of contractive-type mappings. Indian J. Pure Appl. Math. 20, 12 (1999), 1229-1234. · Zbl 0955.47038
[13] Osilike, M. O.: Stability results for fixed point iteration procedures. J. Nigerian Math. Soc. 14/15 (1995/96), 17-29.
[14] Rafiq, A.: Common fixed points of quasi-contractive-operators. General Mathematics 16, 2 (2008), 49-58. · Zbl 1235.47073
[15] Rhoades, B. E.: Fixed point iteration using infinite matrices. Trans. Amer. Math. Soc. 196 (1974), 161-176. · Zbl 0267.47032
[16] Rhoades, B. E.: Comments on two fixed point iteration method. J. Math. Anal. Appl. 50, 2 (1976), 741-750. · Zbl 0353.47029
[17] Rhoades, B. E.: A comparison of various definitions of contractive mappings. Trans. Amer. Math. Soc. 226 (1977), 257-290. · Zbl 0365.54023
[18] Rus, I. A.: Generalized Contractions and Applications. Cluj University Press, Cluj-Napoca, 2001. · Zbl 0968.54029
[19] Rus, I. A., Petrusel, A., Petrusel, G.: Fixed Point Theory: 1950-2000, Romanian Contributions. House of the Book of Science, Cluj-Napoca, 2002. · Zbl 1005.54037
[20] Takahashi, W.: Iterative methods for approximation of fixed points and their applications. J. Oper. Res. Soc. Jpn. 43, 1 (2000), 87-108. · Zbl 1004.65069
[21] Takahashi, W., Tamura, T.: Convergence theorems for a pair of nonexpansive mappings. J. Convex Analysis 5, 1 (1995), 45-58. · Zbl 0916.47042
[22] Xu, Y.: Ishikawa and Mann iteration process with errors for nonlinear strongly accretive operator equations. J. Math. Anal. Appl. 224 (1998), 91-101. · Zbl 0936.47041
[23] Zamfirescu, T.: Fix point theorems in metric spaces. Arch. Math. (Basel) 23 (1972), 292-298. · Zbl 0239.54030
[24] Zeidler, E.: Nonlinear Functional Analysis and its Applications, I. Fixed Point Theorems, Springer, New York, 1986. · Zbl 0583.47050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.