Andersson, Mats Solution formulas for the \(\partial {\bar\partial}\)-equation and weighted Nevanlinna classes in the polydisc. (English) Zbl 0598.32007 Bull. Sci. Math., II. Sér. 109, 135-154 (1985). The interest in the Poincaré-Lelong equation \(i\partial {\bar \partial}u=\theta\) is because of its connection with the set of zeros of a holomorphic function of a certain Nevanlinna class. [See P. Lelong, Bull. Soc. Math. France 85, 239-262 (1957; Zbl 0079.309); G. M. Khenkin, Sov. Math., Dokl. 16(1975), 1310-1314 (1976); translation from Dokl. Akad. Nauk SSSR 224, 771-774 (1975; Zbl 0333.35056)]. Inspired by the theorem of Sh. A. Dautov and G. M. Khenkin in Math. USSR, Sb. 35, 449-459 (1979); translation from Mat. Sb., n. Ser. 107(149), 163-174 (1978; Zbl 0392.32001), Charpentier and Khenkin- Polyakov considered some weighted Nevanlinna classes in the polydisc \(D^ n=\{z\in {\mathbb{C}}^ n: \max \{| z_ j|: 1\leq j\leq n\}<1\}.\) In this paper the author introduces some other weighted Nevanlinna classes \(N(d\lambda_{\alpha})\), corresponding to the product weights \(d\lambda_{\alpha}=\prod^{n}_{j=1}(1-| \zeta_ j|^ 2)^{\alpha_ j}d\lambda (\zeta_ j),\) where \(\alpha =(\alpha_ 1,...,\alpha_ n)\) and \(\alpha_ j>-1\). He gets necessary and sufficient conditions for the existence of solutions in \(N(d\lambda_{\alpha})\) of the Poincaré-Lelong equation for the polydisc in the complex n-space (Theorem 1). Explicit formulas for solutions of the Poincaré-Lelong equation in the polydisc allow to get estimates. Reviewer: R.Braun Cited in 6 Documents MSC: 32A25 Integral representations; canonical kernels (Szegő, Bergman, etc.) 32W05 \(\overline\partial\) and \(\overline\partial\)-Neumann operators 32A07 Special domains in \({\mathbb C}^n\) (Reinhardt, Hartogs, circular, tube) (MSC2010) 32A22 Nevanlinna theory; growth estimates; other inequalities of several complex variables 35N15 \(\overline\partial\)-Neumann problems and formal complexes in context of PDEs Keywords:\({\bar \partial }\)-Neumann problem; integral representations; special domains; Poincaré-Lelong equation; weighted Nevanlinna classes; polydisc Citations:Zbl 0079.309; Zbl 0333.35056; Zbl 0392.32001 PDF BibTeX XML Cite \textit{M. Andersson}, Bull. Sci. Math., II. Sér. 109, 135--154 (1985; Zbl 0598.32007) OpenURL