zbMATH — the first resource for mathematics

Le réseau \(L^ 2\) d’un système holonome régulier. (The \(L^ 2\)- réseau of a regular holonomic system). (French) Zbl 0598.32014
The purpose of this paper is to define an \(''L^ 2\)-réseau” of a regular holonomic \({\mathcal D}_ X\)-module on a smooth complex variety and give some applications of it. Let X be a smooth complex variety, Y a closed analytic subset of pure codimension in X and S a hypersurface in Y such that Y-S is non-singular. For a regular holonomic \({\mathcal D}_ X\)- module \({\mathcal M}\) whose support is contained in Y, we may define a canonical sub \({\mathcal O}_ X\)-module of \({\mathcal M}\) associated to the \(L^ 2\)-extension. We call it the \(L^ 2\)-réseau and denote it by \(L^ 2(Y,{\mathcal M})\). In particular, when \(Y=X\) and \({\mathcal M}\) has no non-trivial section supported in S, the \(L^ 2\)-réseau contains the réseau of Deligne. By using \(L^ 2(X,{\mathcal M})\), the author discusses a condition in order that \({\mathcal M}\) is generated by a ”standard” distribution on X.
Reviewer: M.Muro

32C15 Complex spaces
32C25 Analytic subsets and submanifolds
14F10 Differentials and other special sheaves; D-modules; Bernstein-Sato ideals and polynomials
32C36 Local cohomology of analytic spaces
Full Text: DOI EuDML
[1] [BBD] Beilinson, A., Bernstein, J., Deligne, P.: Faisceaux pervers. Astérisque100 (1982) · Zbl 0536.14011
[2] [Br 1] Brylinski, J.L.: Modules holonômes réguliers et filtration de Hodge II. Analyse et topologie sur les espaces singuliers II?III. Astérisque101-102 (1983)
[3] [Br2] Brylinski, J.L.: La classe fondamentale d’une variété algébrique engendre leD-module qui calcule sa cohomologie d’intersection (d’après M. Kashiwara). Système différentiel et singularités. Astérisque130 (1985)
[4] [B1] Barlet, D.: Familles analytiques de cycles et classes fondamentales relatives. Lect. Notes Math.807 (1980) · Zbl 0434.32011
[5] [B2] Barlet, D.: Fonctions de type trace. Ann. Inst. Fourier (Grenoble)33, 2 (1983) · Zbl 0498.32002
[6] [D] Deligne, P.: Equations différentielles à points singuliers réguliers. Lect. Notes Math.163 (1970)
[7] [HL] Herrera, M., Lieberman, D.: Residues and Principal values on complex spaces. Math. Ann.194 (1971) · Zbl 0224.32012
[8] [K1] Kashiwara, M.: The Riemann-Hilbert problem for holomomic systems. Publ. RIMS20 (1984)
[9] [K2] Kashiwara, M.: Regular holonomicD-modules and distributions on complex manifold. (Preprint (1984); à paraître aux Advanced Study of Pure Math)
[10] [KK] Kashiwara, M., Kawai, T.: On holonomic systems of microdifferential equations III system with regular singularities. Publ. RIMS (Kyoto Univ.)17 (1981) · Zbl 0505.58033
[11] [L] Lelong, P.: Integration sur un ensemble analytique complexe Bull. Soc. Math. Fr.85 (1957) · Zbl 0079.30901
[12] [M] Mebkhout, Z.: Local cohomology of an analytic space. Publ. RIMS12 [Suppl] (1977) · Zbl 0372.32007
[13] [R] Ramis, J.P.: Variations sur le thème ?GAGA?. Lect. Notes Math.694 (1978) · Zbl 0398.32008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.