×

Existence of the time evolution for Schrödinger operators with time dependent singular potentials. (English) Zbl 0598.35033

From the author’s abstract: ”Let N particles move along fixed paths \(y_ j(t)\) and cause a time dependent potential. The quantum mechanical description for an additional particle is given by the Schrödinger equation \[ i(\partial /\partial t)\psi =-(1/2m)\Delta \psi +\sum^{N}_{j=1}q_ j v(x-y_ j(t))\psi. \] For a class of trajectories \(y_ j(t)\) the propagator is constructed for the Coulomb potential \(v(x)=1/| x|\) \((x\in {\mathbb{R}}^ 3)\) and stronger singularities.”
Reviewer: R.Racke

MSC:

35J10 Schrödinger operator, Schrödinger equation
81U10 \(n\)-body potential quantum scattering theory
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
PDF BibTeX XML Cite
Full Text: Numdam EuDML

References:

[1] J.B. Delos , Theory of electronic transitions in slow atomic collisions . Rev. Mod. Phys. , t. 53 , 1981 , p. 287 - 357 .
[2] G.A. Hagedorn , An analog of the RAGE Theorem for the impact parameter approximation to three particle scattering . Ann. Inst. H. Poincaré , t. A 38 , 1983 , p. 59 - 68 . Numdam | MR 700700 | Zbl 0517.47009 · Zbl 0517.47009
[3] G.C. Hegerfeld , Remarks on causality, localization and spreading of wave packets . Phys. Rev. D. , t. 22 , 1980 , p. 377 - 384 . MR 578960
[4] T. Kato , Integration of the equation of evolution in a Banach space . J. Math. Soc. Japan , t. 5 , 1953 , p. 208 - 234 . Article | MR 58861 | Zbl 0052.12601 · Zbl 0052.12601
[5] T. Kato , On linear differential equations in Banach spaces . Comm. Pure Appl. Math. , t. 9 , 1956 , p. 479 - 486 . MR 86986 | Zbl 0070.34602 · Zbl 0070.34602
[6] T. Kato , Linear evolution equations of hyperbolic type . J. Fac. Sci. Univ. Tokyo , Sec. 1, t. 17 , 1970 , p. 241 - 258 . MR 279626 | Zbl 0222.47011 · Zbl 0222.47011
[7] T. Kato , Linear evolution equations of hyperbolic type . II. J. Math. Soc. Japan , t. 25 , 1973 , 648 - 666 . Article | MR 326483 | Zbl 0262.34048 · Zbl 0262.34048
[8] M. Reed , B. Simon , Methods of modern mathematical physics . I. Functional analysis . New York , Academic Press , 1972 . MR 493419 | Zbl 0242.46001 · Zbl 0242.46001
[9] M. Reed , B. Simon , Methods of modern mathematical physics . II. Fourier analysis, self-adjointness , New York , Academic Press , 1975 . MR 493420 | Zbl 0308.47002 · Zbl 0308.47002
[10] M. Reed , B. Simon , Methods of modern mathematical physics. IV . Analysis of operators , New York , Academic Press , 1978 . MR 493421 | Zbl 0401.47001 · Zbl 0401.47001
[11] B. Simon , Quantum Mechanicsfor Hamiltonians defined as Quadratic Forms , Princeton University Press , 1971 . MR 455975 | Zbl 0232.47053 · Zbl 0232.47053
[12] H. Tanabe , Equations of Evolution , Pitman , 1979 . MR 533824
[13] U. Wüller , Existenz von Propagatoren für Schrödinger Operatoren mit zeitabhängigen singulären Potentialen , Diplomarbeit, Ruhr-Universität Bochum , 1984 .
[14] K. Yajima , A multi-channel scattering theory for some time dependent hamiltonians, Charge transfer problem . Comm. Math. Phys. , t. 75 , 1980 , p. 153 - 178 . Article | MR 582506 | Zbl 0437.47008 · Zbl 0437.47008
[15] K. Yosida , On the integration of the equation of evolution . J. Fac. Sci. Univ. Tokyo , Sec. 1, t. 9 , 1963 , p. 397 - 402 . MR 150616 | Zbl 0201.18203 · Zbl 0201.18203
[16] K. Yosida , Time dependent evolution equations in a locally compact space . Math. Ann. , t. 162 , 1966 , p. 83 - 86 . MR 190498 | Zbl 0138.08301 · Zbl 0138.08301
[17] K. Yosida , Functional Analysis , Berlin , Heidelberg , New York , Springer , 2 nd. ed., 1968 . MR 500055 · Zbl 0152.32102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.