×

On normal homogeneous Einstein manifolds. (English) Zbl 0598.53049

The main result of the paper is the classification of compact connected simple Lie groups G with closed connected subgroups H such that the Riemannian metric on G/H induced by the Killing form of G is Einstein, while G acts almost effectively on G/H, G/H is simply connected and not strongly isotropy irreducible. For many classes of homogeneous Einstein manifolds G/H contained in this classification, the authors also exhibit another, ”exotic” homogeneous Einstein metric on G/H.
Reviewer: A.Derdzinski

MSC:

53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.)
53C30 Differential geometry of homogeneous manifolds
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML

References:

[1] A. BOREL , Köhlerian Coset Spaces of Semi-simple Lie groups (Proc. Nat. Acad. Sci., U.S.A., Vol. 40, 1954 , pp. 1147-1151). MR 77878 | Zbl 0058.16002 · Zbl 0058.16002
[2] A. BESSE , Einstein Manifolds (to appear in ”Ergebnisse der Mathematik”, Spinger Verlag). MR 867684 | Zbl 0613.53001 · Zbl 0613.53001
[3] M. BERGER , Les variétés riemanniennes homogènes normales simplement connexes à courbure strictement positive (Ann. Sci. Norm. Sup. Pisa, Vol. 15, 1961 , pp. 179-246). Numdam | MR 133083 | Zbl 0101.14201 · Zbl 0101.14201
[4] J. P. BOURGUIGNON and H. KARCHER , Curvature Operators : Pinching Estimates and Geometric Examples (Ann. scient. Éc. Norm. Sup., Vol. 11, 1978 , pp. 71-92). Numdam | MR 493867 | Zbl 0386.53031 · Zbl 0386.53031
[5] A. BOREL and J. DE SIEBENTHAL , Les sous-groupes fermés de rang maximum des groupes de Lie clos (Comm. Math. Helv., Vol. 23, 1949 , pp. 200-221). MR 32659 | Zbl 0034.30701 · Zbl 0034.30701
[6] Z. I. BOREVICH and I. R. SHAFAREVICH , Number Theory, Academic Press, N.Y., 1966 . MR 195803 | Zbl 0145.04902 · Zbl 0145.04902
[7] J. E. D’ATRI and W. ZILLER , Naturally Reductive Metrics and Einstein Metrics on Compact Lie Groups (Memoirs of the Am. Math. Soc., Vol. 18, No. 215, 1979 ). MR 519928 | Zbl 0404.53044 · Zbl 0404.53044
[8] E. B. DYNKIN , Semi-simple Subalgebras of Semi-simple Lie Algebras (Transl. Am. Math. Soc., Series 2, Vol. 6, 1957 , pp. 111-244). Zbl 0077.03404 · Zbl 0077.03404
[9] E. B. DYNKIN , Maximal Subalgebras of the Classical Groups (Transl. Am. Math. Soc., Series 2, Vol. 6, 1957 , pp. 245-378). MR 910539 | Zbl 0077.03403 · Zbl 0077.03403
[10] H. ELIASSON , Die Krümmung des Raumes Sp (2)/SU (2) von Berger (Math. Ann., Vol. 164, 1966 , pp. 317-323). MR 196679 | Zbl 0141.19401 · Zbl 0141.19401
[11] C. GORDON and W. ZILLER , Naturally Reductive Metrics of Non-positive Ricci Curvature (Proc. Am. Math. Soc.), Vol. 91, 1984 , pp. 287-290. MR 740188 | Zbl 0513.53049 · Zbl 0513.53049
[12] G. JENSEN , Einstein Metrics on Principal Fibre Bundles (J. Diff. Geom., Vol. 8, 1973 , pp. 599-614). MR 353209 | Zbl 0284.53038 · Zbl 0284.53038
[13] B. KONSTANT , On Differential Geometry and Homogeneous Spaces, I and II (Proc. Nat. Acad. Sc., U.S.A., Vol. 42, 1956 , pp. 258-261 and 354-357). MR 88017 | Zbl 0075.31603 · Zbl 0075.31603
[14] B. KOSTANT , The Principal Three-Dimensional Subgroup and the Betti Numbers of a Complex Simple Lie Group (Amer. J. Math., Vol. 81, 1959 , pp. 973-1032). MR 114875 | Zbl 0099.25603 · Zbl 0099.25603
[15] S. KOBAYASHI and K. NOMIZU , Foundations of Differential Geometry , Vol. II, Interscience, N.Y., 1969 . Zbl 0175.48504 · Zbl 0175.48504
[16] T. MATSUZAWA , Einstein Metrics on Fibred Riemannian Structures (Kodai Math. J., Vol. 6, 1983 , pp. 340-345). Article | MR 717324 | Zbl 0534.53040 · Zbl 0534.53040
[17] Y. MATSUSHIMA , Remarks on Köhler-Einstein Manifolds (Nagoya Math. J., Vol. 46, 1972 , pp. 161-173). Article | MR 303478 | Zbl 0249.53050 · Zbl 0249.53050
[18] A. L. ONIŠČIK , Inclusion Relations Among Transitive Compact Transformation Groups (Transl. Amer. Math. Soc., Series 2, Vol. 50, 1966 , pp. 5-58). Zbl 0207.33604 · Zbl 0207.33604
[19] A. L. ONIŠČIK , On Transitive Compact Transformation Groups (Transl. Amer. Math. Soc., Series 2, Vol. 55, 1966 , pp. 153-194).
[20] A. SAGLE , Some Homogeneous Einstein Manifolds (Nagoya Math. J., Vol. 39, 1970 , pp. 81-106). Article | MR 271867 | Zbl 0198.54801 · Zbl 0198.54801
[21] M. WANG , Some Examples of Homogeneous Einstein Manifolds in Dimension Seven (Duke Math. J., Vol. 49, 1982 , pp. 23-28). Article | MR 650366 | Zbl 0488.53035 · Zbl 0488.53035
[22] M. WANG and W. ZILLER , On the Isotropy Representation of a Symmetric Space (to appear in Rend. Sem. Mat. Univers. Politecn. Torino). MR 829009 | Zbl 0636.53058 · Zbl 0636.53058
[23] M. WANG and W. ZILLER , Isotropy Irreducible Spaces, Symmetric Spaces, and Maximal Subgroups of Classical Groups (in preparation). · Zbl 0804.53075
[24] M. WANG and W. ZILLER , Existence and Non-existence of Homogeneous Einstein Metrics , (to appear in Invent. Math.). MR 830044 | Zbl 0596.53040 · Zbl 0596.53040
[25] J. A. WOLF , The Geometry and Structure of Isotropy Irreducible Homogeneous Spaces (Acta Mathematica, Vol. 120, 1968 , pp. 59-148) ; Correction (Acta Mathematica, Vol. 152, 1984 , pp. 141-142). MR 736216 | Zbl 0157.52102 · Zbl 0157.52102
[26] J. A. WOLF , Spaces of Constant Curvature , 4th Edition, Publish or Perish Inc., 1977 . · Zbl 0373.57025
[27] W. ZILLER , Homogeneous Einstein Metrics on Spheres and Projective Spaces (Math. Ann., Vol. 259, 1982 , pp. 351-358). MR 661203 | Zbl 0469.53043 · Zbl 0469.53043
[28] W. ZILLER , Homogeneous Einstein Metrics (Global Riemannian Geometry, T.J. WILLMORE and N. HITCHIN Eds., John-Wiley, 1984 , pp. 126-135). MR 757214 | Zbl 0615.53038 · Zbl 0615.53038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.